Suppr超能文献

基于数据的低血糖预测建模:重要性、趋势及其对临床实践的意义。

Data-based modeling for hypoglycemia prediction: Importance, trends, and implications for clinical practice.

机构信息

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, China.

出版信息

Front Public Health. 2023 Jan 26;11:1044059. doi: 10.3389/fpubh.2023.1044059. eCollection 2023.

Abstract

BACKGROUND AND OBJECTIVE

Hypoglycemia is a key barrier to achieving optimal glycemic control in people with diabetes, which has been proven to cause a set of deleterious outcomes, such as impaired cognition, increased cardiovascular disease, and mortality. Hypoglycemia prediction has come to play a role in diabetes management as big data analysis and machine learning (ML) approaches have become increasingly prevalent in recent years. As a result, a review is needed to summarize the existing prediction algorithms and models to guide better clinical practice in hypoglycemia prevention.

MATERIALS AND METHODS

PubMed, EMBASE, and the Cochrane Library were searched for relevant studies published between 1 January 2015 and 8 December 2022. Five hypoglycemia prediction aspects were covered: real-time hypoglycemia, mild and severe hypoglycemia, nocturnal hypoglycemia, inpatient hypoglycemia, and other hypoglycemia (postprandial, exercise-related).

RESULTS

From the 5,042 records retrieved, we included 79 studies in our analysis. Two major categories of prediction models are identified by an overview of the chosen studies: simple or logistic regression models based on clinical data and data-based ML models (continuous glucose monitoring data is most commonly used). Models utilizing clinical data have identified a variety of risk factors that can lead to hypoglycemic events. Data-driven models based on various techniques such as neural networks, autoregressive, ensemble learning, supervised learning, and mathematical formulas have also revealed suggestive features in cases of hypoglycemia prediction.

CONCLUSION

In this study, we looked deep into the currently established hypoglycemia prediction models and identified hypoglycemia risk factors from various perspectives, which may provide readers with a better understanding of future trends in this topic.

摘要

背景与目的

低血糖是糖尿病患者实现血糖控制优化的关键障碍,已被证明会导致一系列不良后果,如认知障碍、增加心血管疾病和死亡率。随着近年来大数据分析和机器学习(ML)方法的日益普及,低血糖预测在糖尿病管理中发挥了作用。因此,需要进行综述,总结现有的预测算法和模型,以指导更好的临床预防低血糖实践。

材料与方法

在 2015 年 1 月 1 日至 2022 年 12 月 8 日期间,检索了 PubMed、EMBASE 和 Cochrane 图书馆中相关的研究。涵盖了五个低血糖预测方面:实时低血糖、轻度和重度低血糖、夜间低血糖、住院低血糖和其他低血糖(餐后、与运动相关)。

结果

从 5042 条记录中,我们纳入了 79 项研究进行分析。通过对所选研究的概述,确定了两种主要的预测模型类别:基于临床数据的简单或逻辑回归模型和基于数据的 ML 模型(最常用的是连续血糖监测数据)。利用临床数据的模型已经确定了各种可能导致低血糖事件的风险因素。基于神经网络、自回归、集成学习、监督学习和数学公式等各种技术的数据驱动模型也揭示了在低血糖预测中具有提示性的特征。

结论

在这项研究中,我们深入研究了现有的低血糖预测模型,并从不同角度确定了低血糖的风险因素,这可能使读者更好地了解该主题的未来趋势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2469/9910805/2b53f57dfbc1/fpubh-11-1044059-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验