School of Marine Sciences, Ningbo University, Ningbo, China.
College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
Appl Environ Microbiol. 2024 Jun 18;90(6):e0206823. doi: 10.1128/aem.02068-23. Epub 2024 May 24.
a prominent source of industrial fucoxanthin production, faces challenges in its application due to its tolerance to high-temperature environments. This study investigates the physiological responses of to high-temperature stress and its impact on fucoxanthin content, with a specific focus on the role of -zeatin. The results reveal that high-temperature stress inhibits 's growth and photosynthetic activity, leading to a decrease in fucoxanthin content. Transcriptome analysis shows that high temperature suppresses the expression of genes related to photosynthesis (e.g., , , and ) and fucoxanthin biosynthesis (e.g., , , and ), underscoring the negative effects of high temperature on . Interestingly, genes associated with -zeatin biosynthesis and cytokinesis signaling pathways exhibited increased expression under high-temperature conditions, indicating a potential role of -zeatin signaling in response to elevated temperatures. Content measurements confirm that high temperature enhances -zeatin content. Furthermore, the exogenous addition of cytokinesis mimetics or inhibitors significantly affected 's high-temperature resistance. Overexpression of the biosynthetic enzyme gene enhanced 's resistance to high-temperature stress, while genetic knockout of e reduced its resistance to high temperatures. Therefore, this research not only uncovers a novel mechanism for high-temperature resistance in but also offers a possible alga species that can withstand high temperatures for the industrial production of fucoxanthin, offering valuable insights for practical utilization.IMPORTANCEThis study delves into 's response to high-temperature stress, specifically focusing on -zeatin. We uncover inhibited growth, reduced fucoxanthin, and significant -zeatin-related gene expression under high temperatures, highlighting potential signaling mechanisms. Crucially, genetic engineering and exogenous addition experiments confirm that the change in -zeatin levels could influence 's resistance to high-temperature stress. This breakthrough deepens our understanding of microalgae adaptation to high temperatures and offers an innovative angle for industrial fucoxanthin production. This research is a pivotal step toward developing heat-resistant microalgae for industrial use.
一种突出的工业岩藻黄质生产源,由于其对高温环境的耐受性,在应用方面面临挑战。本研究调查了对高温胁迫的生理反应及其对岩藻黄质含量的影响,特别关注玉米素的作用。结果表明,高温胁迫抑制了的生长和光合作用活性,导致岩藻黄质含量降低。转录组分析表明,高温抑制了与光合作用(例如, , ,和 )和岩藻黄质生物合成(例如, , ,和 )相关的基因表达,突出了高温对 的负面影响。有趣的是,与玉米素生物合成和细胞分裂信号通路相关的基因在高温条件下表达增加,表明玉米素信号在应对高温时可能发挥作用。含量测定证实高温增强了玉米素的含量。此外,细胞分裂类似物或抑制剂的外源添加显著影响了的高温抗性。生物合成酶基因 的过表达增强了对高温胁迫的抗性,而 的遗传敲除降低了其对高温的抗性。因此,这项研究不仅揭示了高温抗性的新机制,还为工业生产岩藻黄质提供了一种可能耐受高温的藻类物种,为实际利用提供了有价值的见解。重要性本研究深入探讨了对高温胁迫的反应,特别是玉米素。我们发现高温下生长受到抑制,岩藻黄质减少,玉米素相关基因表达显著,突出了潜在的信号机制。至关重要的是,遗传工程和外源添加实验证实了玉米素水平的变化可能影响对高温胁迫的抗性。这一突破加深了我们对微藻适应高温的理解,并为工业岩藻黄质生产提供了创新视角。这项研究是开发工业用耐热微藻的重要一步。