Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London, UK.
Nat Commun. 2020 Dec 7;11(1):6241. doi: 10.1038/s41467-020-20127-x.
Imaging compound action potentials (CAPs) in peripheral nerves could help avoid side effects in neuromodulation by selective stimulation of identified fascicles. Existing methods have low resolution, limited imaging depth, or are invasive. Fast neural electrical impedance tomography (EIT) allows fascicular CAP imaging with a resolution of <200 µm, <1 ms using a non-penetrating flexible nerve cuff electrode array. Here, we validate EIT imaging in rat sciatic nerve by comparison to micro-computed tomography (microCT) and histology with fluorescent dextran tracers. With EIT, there are reproducible localized changes in tissue impedance in response to stimulation of individual fascicles (tibial, peroneal and sural). The reconstructed EIT images correspond to microCT scans and histology, with significant separation between the fascicles (p < 0.01). The mean fascicle position is identified with an accuracy of 6% of nerve diameter. This suggests fast neural EIT can reliably image the functional fascicular anatomy of the nerves and so aid selective neuromodulation.
在外周神经中对复合动作电位(CAP)进行成像,可以通过对已识别的神经束进行选择性刺激来帮助避免神经调节的副作用。现有的方法分辨率低、成像深度有限或具有侵入性。快速神经电阻抗断层成像(EIT)允许使用非穿透性柔性神经袖带电极阵列以 <200 µm、<1 ms 的分辨率进行神经束 CAP 成像。在这里,我们通过与微计算机断层扫描(microCT)和荧光葡聚糖示踪剂的组织学比较,验证了大鼠坐骨神经中的 EIT 成像。使用 EIT,在刺激单个神经束(胫神经、腓神经和腓肠神经)时,组织阻抗会出现可重复的局部变化。重建的 EIT 图像与 microCT 扫描和组织学相对应,神经束之间有明显的分离(p < 0.01)。神经束的平均位置识别精度为神经直径的 6%。这表明快速神经 EIT 可以可靠地对神经的功能束解剖结构进行成像,从而有助于选择性神经调节。