Suppr超能文献

基于调控元件的预测识别出骨质疏松症新的易感性调控变异体。

Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis.

作者信息

Yao Shi, Guo Yan, Dong Shan-Shan, Hao Ruo-Han, Chen Xiao-Feng, Chen Yi-Xiao, Chen Jia-Bin, Tian Qing, Deng Hong-Wen, Yang Tie-Lin

机构信息

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China.

School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.

出版信息

Hum Genet. 2017 Aug;136(8):963-974. doi: 10.1007/s00439-017-1825-4. Epub 2017 Jun 20.

Abstract

Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.

摘要

尽管全基因组关联研究(GWAS)已经确定了许多骨质疏松症的易感基因,但仍有很大一部分遗传力缺失有待发现。整合调控信息和GWAS可以为易感单核苷酸多态性(SNP)与骨质疏松症之间的生物学联系提供新的见解。我们利用骨质疏松症相关变异和调控特征数据生成了五个机器学习分类器。我们获得了最优分类器,并预测全基因组SNP以发现易感调控变异。我们进一步利用骨质疏松症遗传因素联盟(GEFOS)和三个内部GWAS样本,验证预测的阳性SNP的关联性。在所有机器学习方法中,随机森林分类器表现最佳,F1分数为0.8871。使用优化模型,我们预测了37,584个骨质疏松症候选SNP。根据荟萃分析结果,一系列调控变异在多次检验校正后与骨质疏松症显著相关,并促进了已知骨质疏松症相关蛋白质编码基因的表达。总之,通过机器学习结合GWAS和调控元件可以为理解骨质疏松症的发病机制提供额外信息。我们预测的调控变异将为骨质疏松症的病因研究和治疗提供新的靶点。

相似文献

3
Gene-based GWAS analysis for consecutive studies of GEFOS.基于基因的 GEFOS 连续研究的 GWAS 分析。
Osteoporos Int. 2018 Dec;29(12):2645-2658. doi: 10.1007/s00198-018-4654-y. Epub 2018 Oct 10.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验