Suppr超能文献

关于全基因组关联研究及其荟萃分析:从骨质疏松症研究中吸取的经验教训。

On genome-wide association studies and their meta-analyses: lessons learned from osteoporosis studies.

机构信息

Center for Bioinformatics and Genomics, and Department of Biostatistics and Bioinformatics, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA.

出版信息

J Clin Endocrinol Metab. 2013 Jul;98(7):E1278-82. doi: 10.1210/jc.2013-1637. Epub 2013 Jun 19.

Abstract

CONTEXT

Genome-wide association studies (GWASs) and meta-analyses of GWASs have led to the identification of a number of promising genes for osteoporosis. However, inconsistent findings are seen among and between GWASs and meta-analyses, and inconsistencies have even been observed between meta-analyses whose samples overlapped to a large extent.

OBJECTIVES

We carefully evaluated the usefulness and limitations of GWASs and their meta-analyses, with an emphasis on understanding the reasons for inconsistent results.

DESIGN

Based on published empirical data for osteoporosis, we performed a series of theoretical analyses using simulation studies.

RESULTS

The power of meta-analyses is limited to identifying a particular locus with modest effect size. In the situation in which individual GWASs were not included in the meta-analysis (ie, nonoverlap), the meta-analysis has rather limited power to replicate particular loci identified from the individual GWASs. Between-study heterogeneity may result in a power loss in meta-analyses, implying that adding heterogeneous samples into a meta-analysis may reduce the power, rather than having the anticipated effect of increasing power due to increased sample size.

CONCLUSIONS

Discordant findings in GWASs and meta-analyses are not unexpected, even for true susceptible genes. Contrary to the general belief, meta-analyses should not and cannot be used as a gold standard to evaluate the results of individual GWASs. Individual GWASs in homogeneous populations can detect true disease genes that meta-analyses may have low power to replicate.

摘要

背景

全基因组关联研究(GWAS)和 GWAS 的荟萃分析已经确定了许多有希望的骨质疏松症基因。然而,GWAS 和荟萃分析之间以及荟萃分析之间的结果并不一致,即使在样本重叠程度很大的荟萃分析之间也存在不一致。

目的

我们仔细评估了 GWAS 及其荟萃分析的有用性和局限性,重点是了解结果不一致的原因。

设计

基于骨质疏松症的已发表经验数据,我们使用模拟研究进行了一系列理论分析。

结果

荟萃分析的功效仅限于识别具有中等效应大小的特定基因座。在个体 GWAS 未包含在荟萃分析中的情况下(即不重叠),荟萃分析复制个体 GWAS 中确定的特定基因座的能力相当有限。研究间异质性可能导致荟萃分析中的功效损失,这意味着将异质样本添加到荟萃分析中可能会降低功效,而不是由于样本量增加而预期增加功效。

结论

即使对于真正的易感基因,GWAS 和荟萃分析中的不一致结果也并不意外。与普遍看法相反,荟萃分析不应该也不能作为评估个体 GWAS 结果的金标准。在同质人群中进行的个体 GWAS 可以检测到荟萃分析可能没有能力复制的真正疾病基因。

相似文献

2
Gene-based GWAS analysis for consecutive studies of GEFOS.基于基因的 GEFOS 连续研究的 GWAS 分析。
Osteoporos Int. 2018 Dec;29(12):2645-2658. doi: 10.1007/s00198-018-4654-y. Epub 2018 Oct 10.
3
Genome-wide Association Studies for Osteoporosis: A 2013 Update.骨质疏松症的全基因组关联研究:2013年更新
J Bone Metab. 2014 May;21(2):99-116. doi: 10.11005/jbm.2014.21.2.99. Epub 2014 May 31.

引用本文的文献

7
Genome-wide Association Studies for Osteoporosis: A 2013 Update.骨质疏松症的全基因组关联研究:2013年更新
J Bone Metab. 2014 May;21(2):99-116. doi: 10.11005/jbm.2014.21.2.99. Epub 2014 May 31.
9
The genetic basis of osteoporosis-future challenges.骨质疏松症的遗传基础——未来的挑战
Bonekey Rep. 2013 Dec 11;2:484. doi: 10.1038/bonekey.2013.218. eCollection 2013.

本文引用的文献

8
A re-evaluation of random-effects meta-analysis.随机效应荟萃分析的重新评估。
J R Stat Soc Ser A Stat Soc. 2009 Jan;172(1):137-159. doi: 10.1111/j.1467-985X.2008.00552.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验