Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China.
Angew Chem Int Ed Engl. 2018 Jan 2;57(1):122-138. doi: 10.1002/anie.201705628. Epub 2017 Nov 24.
Semiconductor photocatalysis is a trustworthy approach to harvest clean solar light for energy conversions, while state-of-the-art catalytic efficiencies are unsatisfactory because of the finite light response and/or recombination of robust charge carriers. Along with the development of modern material characterization techniques and electronic-structure computations, oxygen vacancies (OVs) on the surface of real photocatalysts, even in infinitesimal concentration, are found to play a more decisive role in determining the kinetics, energetics, and mechanisms of photocatalytic reactions. This Review endeavors to clarify the inherent functionality of OVs in photocatalysis at the surface molecular level using 2D BiOCl as the platform. Structure sensitivity of OVs on reactivity and selectivity of photocatalytic reactions is intensely discussed via confining OVs onto prototypical BiOCl surfaces of different structures. The critical understanding of OVs chemistry can help consolidate and advance the fundamental theories of photocatalysis, and also offer new perspectives and guidelines for the rational design of catalysts with satisfactory performance.
半导体光催化是一种可靠的方法,可以利用清洁的太阳能进行能量转换,然而,由于有限的光响应和/或强电荷载流子的复合,最先进的催化效率并不令人满意。随着现代材料特性分析技术和电子结构计算的发展,人们发现实际光催化剂表面上的氧空位(OVs),即使浓度极小,对于确定光催化反应的动力学、能量学和机制也起着更决定性的作用。本综述以二维 BiOCl 为平台,力图在表面分子水平上阐明 OVs 在光催化中的固有功能。通过将 OVs 限制在不同结构的典型 BiOCl 表面上,强烈讨论了 OVs 对光催化反应活性和选择性的结构敏感性。对 OVs 化学的深入理解有助于巩固和推进光催化的基础理论,也为具有令人满意性能的催化剂的合理设计提供了新的视角和指导。