Suppr超能文献

评估基于域的定域对自然轨道(DLPNO)近似方法用于大型超分子复合物中的非共价相互作用。

Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes.

作者信息

Gray Montgomery, Herbert John M

机构信息

Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.

出版信息

J Chem Phys. 2024 Aug 7;161(5). doi: 10.1063/5.0206533.

Abstract

The titular domain-based local pair natural orbital (DLPNO) approximation is the most widely used method for extending correlated wave function models to large molecular systems, yet its fidelity for intermolecular interaction energies in large supramolecular complexes has not been thoroughly vetted. Non-covalent interactions are sensitive to tails of the electron density and involve nonlocal dispersion that is discarded or approximated if the screening of pair natural orbitals (PNOs) is too aggressive. Meanwhile, the accuracy of the DLPNO approximation is known to deteriorate as molecular size increases. Here, we test the DLPNO approximation at the level of second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] for a variety of large supramolecular complexes. DLPNO-MP2 interaction energies are within 3% of canonical values for small dimers with ≲10 heavy atoms, but for larger systems, the DLPNO approximation is often quite poor unless the results are extrapolated to the canonical limit where the threshold for discarding PNOs is taken to zero. Counterpoise correction proves to be essential in reducing errors with respect to canonical results. For a sequence of nanoscale graphene dimers up to (C96H24)2, extrapolated DLPNO-MP2 interaction energies agree with canonical values to within 1%, independent of system size, provided that the basis set does not contain diffuse functions; these cause the DLPNO approximation to behave erratically, such that results cannot be extrapolated in a meaningful way. DLPNO-CCSD(T) calculations are typically performed using looser PNO thresholds as compared to DLPNO-MP2, but this significantly impacts accuracy for large supramolecular complexes. Standard DLPNO-CCSD(T) settings afford errors of 2-6 kcal/mol for dimers involving coronene (C24H12) and circumcoronene (C54H18), even at the DLPNO-CCSD(T1) level.

摘要

基于标题域的定域对自然轨道(DLPNO)近似是将相关波函数模型扩展到大型分子系统时使用最广泛的方法,然而其在大型超分子复合物中分子间相互作用能的保真度尚未得到充分检验。非共价相互作用对电子密度的尾部很敏感,并且涉及非局域色散,如果对自然轨道对(PNO)的筛选过于激进,这种色散就会被丢弃或近似处理。同时,已知DLPNO近似的精度会随着分子尺寸的增加而降低。在这里,我们在二阶莫勒 - 普莱塞特微扰理论(MP2)和含单、双激发以及微扰三激发的耦合簇理论[CCSD(T)]水平上,对各种大型超分子复合物测试了DLPNO近似。对于含有≲10个重原子的小双聚体,DLPNO - MP2相互作用能在正则值的3%以内,但对于更大的系统,DLPNO近似通常相当差,除非将结果外推到正则极限,即丢弃PNO的阈值设为零的情况。事实证明,抗衡校正对于减少相对于正则结果的误差至关重要。对于一系列直至(C96H24)2的纳米级石墨烯双聚体,只要基组不包含弥散函数,外推的DLPNO - MP2相互作用能与正则值的吻合度在1%以内,且与系统大小无关;这些弥散函数会使DLPNO近似表现不稳定,以至于结果无法以有意义的方式外推。与DLPNO - MP2相比,DLPNO - CCSD(T)计算通常使用更宽松的PNO阈值,但这对大型超分子复合物的精度有显著影响。即使在DLPNO - CCSD(T1)水平,对于涉及并五苯(C24H12)和外接并五苯(C54H18)的双聚体,标准的DLPNO - CCSD(T)设置会产生2 - 6千卡/摩尔的误差。

相似文献

2
Contrasting conformational behaviors of molecules XXXI and XXXII in the seventh blind test of crystal structure prediction.
Acta Crystallogr B Struct Sci Cryst Eng Mater. 2024 Dec 1;80(Pt 6):606-19. doi: 10.1107/S2052520624005043.
3
Performance of Localized-Orbital Coupled-Cluster Approaches for the Conformational Energies of Longer -Alkane Chains.
J Phys Chem A. 2022 Dec 22;126(50):9375-9391. doi: 10.1021/acs.jpca.2c06407. Epub 2022 Dec 12.
4
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
5
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
Regularized Second-Order Møller-Plesset Theory: Linear Scaling Implementation and Assessment on Large-Molecule Problems.
J Chem Theory Comput. 2025 Jul 22;21(14):6887-6904. doi: 10.1021/acs.jctc.5c00534. Epub 2025 Jul 7.

引用本文的文献

1
Diagrammatic Simplification of Linearized Coupled Cluster Theory.
J Phys Chem A. 2025 Aug 7;129(31):7251-7260. doi: 10.1021/acs.jpca.5c03203. Epub 2025 Jun 26.
2
Linear-Scaling Local Natural Orbital-Based Full Triples Treatment in Coupled-Cluster Theory.
J Chem Theory Comput. 2025 Mar 11;21(5):2386-2401. doi: 10.1021/acs.jctc.4c01716. Epub 2025 Feb 21.
3
On the Potential Energy Surface of the Pyrene Dimer.
Int J Mol Sci. 2024 Oct 6;25(19):10762. doi: 10.3390/ijms251910762.

本文引用的文献

1
Local Second-Order Møller-Plesset Theory with a Single Threshold Using Orthogonal Virtual Orbitals: Theory, Implementation, and Assessment.
J Chem Theory Comput. 2023 Nov 14;19(21):7577-7591. doi: 10.1021/acs.jctc.3c00744. Epub 2023 Oct 25.
2
Assessment of DLPNO-MP2 Approximations in Double-Hybrid DFT.
J Chem Theory Comput. 2023 Nov 14;19(21):7695-7703. doi: 10.1021/acs.jctc.3c00896. Epub 2023 Oct 20.
3
Comparison of Density-Functional Theory Dispersion Corrections for the DES15K Database.
J Phys Chem A. 2023 Oct 19;127(41):8712-8722. doi: 10.1021/acs.jpca.3c04332. Epub 2023 Oct 4.
4
Conformational energies of reference organic molecules: benchmarking of common efficient computational methods against coupled cluster theory.
J Comput Aided Mol Des. 2023 Dec;37(12):607-656. doi: 10.1007/s10822-023-00513-5. Epub 2023 Aug 19.
5
MP2-Based Correction Scheme to Approach the Limit of a Complete Pair Natural Orbitals Space in DLPNO-CCSD(T) Calculations.
J Chem Theory Comput. 2023 Jul 11;19(13):4023-4032. doi: 10.1021/acs.jctc.3c00444. Epub 2023 Jun 20.
6
Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes.
J Chem Theory Comput. 2023 Apr 11;19(7):2039-2047. doi: 10.1021/acs.jctc.3c00087. Epub 2023 Mar 14.
7
Systematic Evaluation of Counterpoise Correction in Density Functional Theory.
J Chem Theory Comput. 2022 Nov 8;18(11):6742-6756. doi: 10.1021/acs.jctc.2c00883. Epub 2022 Oct 17.
8
Coupled Cluster Benchmarking of Large Noncovalent Complexes in L7 and S12L as Well as the C Dimer, DNA-Ellipticine, and HIV-Indinavir.
J Phys Chem A. 2022 Jul 14;126(27):4326-4341. doi: 10.1021/acs.jpca.2c01421. Epub 2022 Jun 29.
9
Double Hybrids and Noncovalent Interactions: How Far Can We Go?
J Phys Chem A. 2022 Apr 28;126(16):2590-2599. doi: 10.1021/acs.jpca.2c01193. Epub 2022 Apr 19.
10
Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost.
J Chem Theory Comput. 2022 Apr 12;18(4):2308-2330. doi: 10.1021/acs.jctc.1c01302. Epub 2022 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验