State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University , Xue Yuan Road 38, Beijing 100191, China.
State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences , Shanghai 200032, China.
Acc Chem Res. 2017 Jul 18;50(7):1640-1653. doi: 10.1021/acs.accounts.7b00108. Epub 2017 Jun 21.
The selective oxidation of organic molecules is a fundamentally important component of modern synthetic chemistry. In the past decades, direct oxidative C-H and C-C bond functionalization has proved to be one of the most efficient and straightforward methods to synthesize complex products from simple and readily available starting materials. Among these oxidative processes, the use of molecular oxygen as a green and sustainable oxidant has attracted considerable attention because of its highly atom-economical, abundant, and environmentally friendly characteristics. The development of new protocols using molecular oxygen as an ideal oxidant is highly desirable in oxidation chemistry. More importantly, the oxygenation reaction of simple molecules using molecular oxygen as the oxygen source offers one of the most ideal processes for the construction of O-containing compounds. Aerobic oxidation and oxygenation by enzymes, such as monooxygenase, tyrosinase, and dopamine β-monooxygenase, have been observed in some biological C-H bond hydroxylation processes. Encouraged by these biological transformations, transition-metal- or organocatalyst-catalyzed oxygenation through dioxygen activation has attracted academic and industrial prospects. In this Account, we describe some advances from our group in oxygenation via C-H/C-C bond activation with molecular oxygen as the oxidant and oxygen source for the synthesis of O-containing compounds. Under an atmosphere of O (1 atm) or air (1 atm), we have successfully incorporated one or two O atoms from O into simple and readily available substrates through C-H, C-C, C═C, and C≡C bond cleavage by transition-metal catalysis, organocatalysis, and photocatalysis. Moreover, we have devised cyclization reactions with molecular oxygen to construct O-heterocycles. Most of these transformations can tolerate a broad range of functional groups. Furthermore, on the basis of isotope labeling experiments, electron paramagnetic resonance spectral analysis, and other mechanistic studies, we have demonstrated that a single electron transfer process via a carbon radical, peroxide radical, or hydroxyl radical is involved in these aerobic oxidation and oxygenation reactions. These protocols provide new approaches for the green synthesis of various α-keto amides, α-keto esters, esters, ketones, aldehydes, formamides, 2-oxoacetamidines, 2-(1H)-pyridones, phenols, tertiary α-hydroxy carbonyls, p-quinols, β-azido alcohols, benzyl alcohols, tryptophols, and oxazoles, which have potential applications in the preparation of natural products, bioactive compounds, and functional materials. In most cases, inexpensive and low-toxicity Cu, Fe, Mn, or NHPI was found to be an efficient catalyst for the transformation. The high efficiency, low cost, high oxygen atom economy, broad substrate scope, and practical operation make the developed oxygenation system very attractive and practical. Moreover, the design of new types of molecular-oxygen- or air-based oxidation and oxygenation reactions can be anticipated.
有机分子的选择性氧化是现代合成化学中一个非常重要的组成部分。在过去的几十年中,直接氧化 C-H 和 C-C 键官能团化已被证明是从简单易得的起始原料合成复杂产物的最有效和最直接的方法之一。在这些氧化过程中,由于其具有高度原子经济性、丰富和环境友好的特点,因此使用分子氧作为绿色可持续氧化剂引起了相当大的关注。使用分子氧作为理想氧化剂的新方法的开发在氧化化学中是非常可取的。更重要的是,使用分子氧作为氧源对简单分子进行的加氧反应为构建含氧化合物提供了最理想的过程之一。在一些生物 C-H 键羟化过程中,已经观察到了酶(如单加氧酶、酪氨酸酶和多巴胺 β-单加氧酶)的有氧氧化和加氧作用。受这些生物转化的启发,通过分子氧活化的过渡金属或有机催化剂催化的氧合反应引起了学术界和工业界的关注。在本专题中,我们描述了我们小组在使用分子氧作为氧化剂和氧源通过 C-H/C-C 键活化进行氧合反应方面的一些进展,用于合成含氧化合物。在 O(1 atm)或空气(1 atm)的气氛下,我们已经成功地通过过渡金属催化、有机催化和光催化,使一个或两个氧原子从 O 掺入到简单易得的底物中,通过 C-H、C-C、C═C 和 C≡C 键的断裂。此外,我们设计了使用分子氧进行的环化反应,以构建 O-杂环。这些转化中的大多数都可以耐受广泛的官能团。此外,基于同位素标记实验、电子顺磁共振谱分析和其他机理研究,我们已经证明,这些有氧氧化和加氧反应涉及通过碳自由基、过氧自由基或氢氧自由基的单电子转移过程。这些方案为各种α-酮酰胺、α-酮酯、酯、酮、醛、甲酰胺、2-氧代乙酰胺、2-(1H)-吡啶酮、酚、叔α-羟基羰基、对醌醇、β-叠氮醇、苄醇、色氨酸和唑的绿色合成提供了新方法,这些方法在天然产物、生物活性化合物和功能材料的制备中具有潜在的应用。在大多数情况下,发现廉价且低毒性的 Cu、Fe、Mn 或 NHPI 是转化的有效催化剂。高效、低成本、高氧原子经济性、广泛的底物范围和实际操作使开发的氧化体系非常有吸引力和实用。此外,可以预期设计新型的基于分子氧或空气的氧化和加氧反应。