Byrne-Nash Rose, Lucero Danielle M, Osbaugh Niki A, Melander Roberta J, Melander Christian, Feldheim Daniel L
Department of Chemistry and Biochemistry, University of Colorado , Boulder, Colorado 80309, United States.
Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States.
Bioconjug Chem. 2017 Jul 19;28(7):1807-1810. doi: 10.1021/acs.bioconjchem.7b00199. Epub 2017 Jun 27.
The unrelenting rise of antimicrobial-resistant bacteria has necessitated the search for novel antibiotic solutions. Herein we describe further mechanistic studies on a 2.0-nm-diameter gold nanoparticle-based antibiotic (designated LAL-32). This antibiotic exhibits bactericidal activity against the Gram-negative bacterium Escherichia coli at 1.0 μM, a concentration significantly lower than several clinically available antibiotics (such as ampicillin and gentamicin), and acute treatment with LAL-32 does not give rise to spontaneous resistant mutants. LAL-32 treatment inhibits cellular division, daughter cell separation, and twin-arginine translocation (Tat) pathway dependent shuttling of proteins to the periplasm. Furthermore, we have found that the cedA gene imparts increased resistance to LAL-32, and shown that an E. coli cedA transposon mutant exhibits increased susceptibility to LAL-32. Taken together, these studies further implicate cell division pathways as the target for this nanoparticle-based antibiotic and demonstrate that there may be inherently higher barriers for resistance evolution against nanoscale antibiotics in comparison to their small molecule counterparts.
抗微生物耐药细菌的持续增加使得寻找新型抗生素解决方案成为必要。在此,我们描述了对一种基于直径2.0纳米金纳米颗粒的抗生素(命名为LAL-32)的进一步机制研究。这种抗生素在1.0 μM浓度下对革兰氏阴性菌大肠杆菌具有杀菌活性,该浓度显著低于几种临床可用抗生素(如氨苄青霉素和庆大霉素),并且用LAL-32进行急性处理不会产生自发耐药突变体。LAL-32处理会抑制细胞分裂、子细胞分离以及依赖双精氨酸转运(Tat)途径的蛋白质向周质的穿梭。此外,我们发现cedA基因赋予对LAL-32更高的抗性,并表明大肠杆菌cedA转座子突变体对LAL-32的敏感性增加。综上所述,这些研究进一步表明细胞分裂途径是这种基于纳米颗粒的抗生素的作用靶点,并证明与小分子抗生素相比,针对纳米级抗生素的耐药性进化可能存在更高的固有障碍。