Suppr超能文献

头部运动可预测性的量化及其对运动过程中前庭输入抑制的影响。

Quantification of Head Movement Predictability and Implications for Suppression of Vestibular Input during Locomotion.

作者信息

MacNeilage Paul R, Glasauer Stefan

机构信息

German Center for Vertigo and Balance Disorders, University Hospital of MunichMunich, Germany.

Center for Sensorimotor Research and Department of Neurology, Ludwig-Maximilian-University MunichMunich, Germany.

出版信息

Front Comput Neurosci. 2017 Jun 7;11:47. doi: 10.3389/fncom.2017.00047. eCollection 2017.

Abstract

Achieved motor movement can be estimated using both sensory and motor signals. The value of motor signals for estimating movement should depend critically on the stereotypy or predictability of the resulting actions. As predictability increases, motor signals become more reliable indicators of achieved movement, so weight attributed to sensory signals should decrease accordingly. Here we describe a method to quantify this predictability for head movement during human locomotion by measuring head motion with an inertial measurement unit (IMU), and calculating the variance explained by the mean movement over one stride, i.e., a metric similar to the coefficient of determination. Predictability exhibits differences across activities, being most predictable during running, and changes over the course of a stride, being least predictable around the time of heel-strike and toe-off. In addition to quantifying predictability, we relate this metric to sensory-motor weighting via a statistically optimal model based on two key assumptions: (1) average head movement provides a conservative estimate of the efference copy prediction, and (2) noise on sensory signals scales with signal magnitude. The model suggests that differences in predictability should lead to changes in the weight attributed to vestibular sensory signals for estimating head movement. In agreement with the model, prior research reports that vestibular perturbations have greatest impact at the time points and during activities where high vestibular weight is predicted. Thus, we propose a unified explanation for time-and activity-dependent modulation of vestibular effects that was lacking previously. Furthermore, the proposed predictability metric constitutes a convenient general method for quantifying any kind of kinematic variability. The probabilistic model is also general; it applies to any situation in which achieved movement is estimated from both motor signals and zero-mean sensory signals with signal-dependent noise.

摘要

可以使用感觉信号和运动信号来估计已实现的运动。用于估计运动的运动信号的值应该主要取决于所产生动作的刻板性或可预测性。随着可预测性的增加,运动信号成为已实现运动的更可靠指标,因此赋予感觉信号的权重应相应降低。在这里,我们描述了一种方法,通过使用惯性测量单元(IMU)测量头部运动,并计算一个步幅内平均运动所解释的方差,即类似于决定系数的指标,来量化人类行走过程中头部运动的这种可预测性。可预测性在不同活动中存在差异,在跑步时最具可预测性,并且在一个步幅过程中会发生变化,在脚跟触地和脚趾离地时最不可预测。除了量化可预测性之外,我们还通过基于两个关键假设的统计最优模型将这个指标与感觉运动加权联系起来:(1)平均头部运动提供了传出副本预测的保守估计,以及(2)感觉信号上的噪声随信号幅度缩放。该模型表明,可预测性的差异应该导致在估计头部运动时赋予前庭感觉信号的权重发生变化。与该模型一致,先前的研究报告称,前庭扰动在预测前庭权重较高的时间点和活动期间具有最大影响。因此,我们提出了一个以前缺乏的关于前庭效应的时间和活动依赖性调制的统一解释。此外,所提出的可预测性指标构成了一种方便的通用方法,用于量化任何类型的运动学变异性。概率模型也是通用的;它适用于从运动信号和具有信号相关噪声的零均值感觉信号估计已实现运动的任何情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/067a/5461342/9f5d4b7fcb41/fncom-11-00047-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验