Foulger Liam H, Charlton Jesse M, Blouin Jean-Sébastien
School of Kinesiology, University of British Columbia, Vancouver, BC, Canada.
School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
Front Hum Neurosci. 2024 Jan 8;17:1329097. doi: 10.3389/fnhum.2023.1329097. eCollection 2023.
The vestibular system, which encodes our head movement in space, plays an important role in maintaining our balance as we navigate the environment. While in-laboratory research demonstrates that the vestibular system exerts a context-dependent influence on the control of balance during locomotion, differences in whole-body and head kinematics between indoor treadmill and real-world locomotion challenge the generalizability of these findings. Thus, the goal of this study was to characterize vestibular-evoked balance responses in the real world using a fully portable system.
While experiencing stochastic electrical vestibular stimulation (0-20 Hz, amplitude peak ± 4.5 mA, root mean square 1.25 mA) and wearing inertial measurement units (IMUs) on the head, low back, and ankles, 10 participants walked outside at 52 steps/minute (∼0.4 m/s) and 78 steps/minute (∼0.8 m/s). We calculated time-dependent coherence (a measure of correlation in the frequency domain) between the applied stimulus and the mediolateral back, right ankle, and left ankle linear accelerations to infer the vestibular control of balance during locomotion.
In all participants, we observed vestibular-evoked balance responses. These responses exhibited phasic modulation across the stride cycle, peaking during the middle of the single-leg stance in the back and during the stance phase for the ankles. Coherence decreased with increasing locomotor cadence and speed, as observed in both bootstrapped coherence differences ( < 0.01) and peak coherence (low back: 0.23 ± 0.07 vs. 0.16 ± 0.14, = 0.021; right ankle: 0.38 ± 0.12 vs. 0.25 ± 0.10, < 0.001; left ankle: 0.33 ± 0.09 vs. 0.21 ± 0.09, < 0.001).
These results replicate previous in-laboratory studies, thus providing further insight into the vestibular control of balance during naturalistic movements and validating the use of this portable system as a method to characterize real-world vestibular responses. This study will help support future work that seeks to better understand how the vestibular system contributes to balance in variable real-world environments.
前庭系统负责编码我们在空间中的头部运动,在我们在环境中移动时维持平衡方面发挥着重要作用。虽然实验室研究表明,前庭系统在运动过程中对平衡控制产生依赖于上下文的影响,但室内跑步机和现实世界运动之间的全身和头部运动学差异对这些发现的普遍性提出了挑战。因此,本研究的目的是使用一个完全便携式系统来表征现实世界中前庭诱发的平衡反应。
10名参与者在头戴惯性测量单元(IMU)、低腰和脚踝处佩戴IMU的情况下,以每分钟52步(约0.4米/秒)和78步(约0.8米/秒)的速度在室外行走,同时接受随机电前庭刺激(0-20赫兹,峰值幅度±4.5毫安,均方根1.25毫安)。我们计算了施加的刺激与后外侧、右踝和左踝线性加速度之间的时间相关相干性(频域中的相关性度量),以推断运动过程中前庭对平衡的控制。
在所有参与者中,我们观察到了前庭诱发的平衡反应。这些反应在整个步幅周期中表现出相位调制,在后侧单腿站立的中间阶段以及脚踝的站立阶段达到峰值。相干性随着运动节奏和速度的增加而降低,这在自举相干性差异(<0.01)和峰值相干性中均有观察到(低腰:0.23±0.07对0.16±0.14,=0.021;右踝:0.38±0.12对0.25±0.10,<0.001;左踝:0.33±0.09对0.21±0.09,<0.001)。
这些结果重复了先前的实验室研究,从而为自然运动过程中前庭对平衡的控制提供了进一步的见解,并验证了使用这种便携式系统作为表征现实世界前庭反应的方法。这项研究将有助于支持未来旨在更好地理解前庭系统如何在可变的现实世界环境中促进平衡的工作。