Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Science, Beijing, 100190, P. R. China.
College of Chemistry and Molecular Science, Wuhan University, Wuhan, 430072, P. R. China.
Adv Mater. 2017 Aug;29(32). doi: 10.1002/adma.201700439. Epub 2017 Jun 22.
As a member of the group IVB transition metal dichalcogenides (TMDs) family, hafnium disulfide (HfS ) is recently predicted to exhibit higher carrier mobility and higher tunneling current density than group VIB (Mo and W) TMDs. However, the synthesis of high-quality HfS crystals, sparsely reported, has greatly hindered the development of this new field. Here, a facile strategy for controlled synthesis of high-quality atomic layered HfS crystals by van der Waals epitaxy is reported. Density functional theory calculations are applied to elucidate the systematic epitaxial growth process of the S-edge and Hf-edge. Impressively, the HfS back-gate field-effect transistors display a competitive mobility of 7.6 cm V s and an ultrahigh on/off ratio exceeding 10 . Meanwhile, ultrasensitive near-infrared phototransistors based on the HfS crystals (indirect bandgap ≈1.45 eV) exhibit an ultrahigh responsivity exceeding 3.08 × 10 A W , which is 10 -fold higher than 9 × 10 A W obtained from the multilayer MoS in near-infrared photodetection. Moreover, an ultrahigh photogain exceeding 4.72 × 10 and an ultrahigh detectivity exceeding 4.01 × 10 Jones, superior to the vast majority of the reported 2D-materials-based phototransistors, imply a great promise in TMD-based 2D electronic and optoelectronic applications.
作为 IVB 过渡金属二硫属化物(TMDs)家族的一员,二硫化铪(HfS)最近被预测具有比 VIB 族(Mo 和 W)TMDs 更高的载流子迁移率和更高的隧穿电流密度。然而,高质量 HfS 晶体的合成,报道很少,极大地阻碍了这一新领域的发展。在此,报道了一种通过范德华外延可控合成高质量原子层 HfS 晶体的简便策略。密度泛函理论计算被应用于阐明 S 边和 Hf 边的系统外延生长过程。令人印象深刻的是,HfS 背栅场效应晶体管表现出具有竞争力的迁移率为 7.6 cm V s 和超过 10 的超高开/关比。同时,基于 HfS 晶体的超灵敏近红外光电晶体管(间接带隙约为 1.45 eV)表现出超过 3.08 × 10 A W 的超高响应率,比近红外光电探测中从多层 MoS 获得的 9 × 10 A W 高 10 倍。此外,超过 4.72 × 10 的超高光电增益和超过 4.01 × 10 的超高探测率,优于大多数报道的基于 2D 材料的光电晶体管,这意味着在基于 TMD 的 2D 电子和光电应用中有很大的应用前景。