Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra, 431004, India.
Faculty of Mechanical Engineering, University of Maribor, Maribor, 2000, Slovenia.
J Biomed Mater Res A. 2017 Nov;105(11):2935-2947. doi: 10.1002/jbm.a.36146. Epub 2017 Jul 7.
Nanostructured hydroxyapatite (HAp) is the most favorable candidate biomaterial for bone tissue engineering because of its bioactive and osteoconductive properties. Herein, we report for the first time ultrasound-assisted facile and economic approach for the synthesis of nanocrystalline hydroxyapatite (Ca (PO ) (OH) ) using recycled eggshell biowaste referred as EHAp. The process involves the reaction of eggshell biowaste as a source of calcium and ammonium dihydrogen orthophosphate as a phosphate source. Ultrasound-mediated chemical synthesis of hydroxyapatite (HAp) is also carried out using similar approach wherein commercially available calcium hydroxide and ammonium dihydrogen orthophosphate were used as calcium and phosphate precursors, respectively and referred as CHAp for better comparison. The prepared materials were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy to determine crystal structure, particle morphology, and the presence of chemical functional groups. The nanocrystalline EHAp and CHAp were observed to have spherical morphology with uniform size distribution. Furthermore, mechanical properties such as Vickers hardness, fracture toughness, and compression tests have been studied of the EHAp and CHAp samples showing promising results. Mechanical properties show the influence of calcination at 600°C EHAp and CHAp material. After calcination, in the case of EHAp material an average hardness, mechanical strength, elastic modulus, and fracture toughness were found 552 MPa, 46.6 MPa, 2824 MPa, and 3.85 MPa m , respectively, while in the case of CHAp 618 MPa, 47.5 MPa, 2071 MPa, and 3.13 MPa m . In vitro cell studies revealed that the EHAp and CHAp nanoparticles significantly increased the attachment and proliferation of the hFOB cells. Here, we showed that EHAp and CHAp provide promising biocompatible materials that do not affect the cell viability and proliferation with enhancing the osteogenic activity of osteoblasts. Moreover, hFOB cells are found to express Osteocalcin, Osteopontin, Collagen I, Osteonectin, BMP-2 on the EHAp and CHAp bone graft. This study demonstrates the formation of pure nanocrystalline HAp with promising properties justifying the fact that the eggshell biowaste could be successfully used for the synthesis of HAp with good mechanical and osteogenic properties. These findings may have significant implications for designing of biomaterial for use in orthopedic tissue regeneration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2935-2947, 2017.
纳米结构羟基磷灰石(HAp)是最受欢迎的骨组织工程生物材料候选物,因为它具有生物活性和骨传导性。在此,我们首次报道了一种使用回收蛋壳生物废物(称为 EHAp)通过超声辅助简便且经济的方法合成纳米晶羟基磷灰石(Ca(PO4)(OH))的方法。该过程涉及蛋壳生物废物作为钙源和磷酸二氢铵作为磷源的反应。使用类似的方法进行超声介导的羟基磷灰石(HAp)化学合成,其中分别使用市售的氢氧化钙和磷酸二氢铵作为钙和磷酸盐前体,并称为 CHAp 以进行更好的比较。通过 X 射线衍射、场发射扫描电子显微镜、傅里叶变换红外光谱和拉曼光谱对所制备的材料进行了表征,以确定晶体结构、颗粒形态和化学官能团的存在。纳米晶 EHAp 和 CHAp 观察到具有球形形态和均匀的粒径分布。此外,还研究了 EHAp 和 CHAp 样品的机械性能,如维氏硬度、断裂韧性和压缩试验,结果表明具有良好的性能。机械性能显示了在 600°C 下煅烧 EHAp 和 CHAp 材料的影响。煅烧后,EHAp 材料的平均硬度、机械强度、弹性模量和断裂韧性分别为 552MPa、46.6MPa、2824MPa 和 3.85MPa·m-1,而在 CHAp 的情况下分别为 618MPa、47.5MPa、2071MPa 和 3.13MPa·m-1。体外细胞研究表明,EHAp 和 CHAp 纳米颗粒显著增加了 hFOB 细胞的附着和增殖。在这里,我们表明 EHAp 和 CHAp 提供了有前途的生物相容性材料,它们不会影响细胞活力和增殖,同时增强成骨细胞的成骨活性。此外,还发现 hFOB 细胞在 EHAp 和 CHAp 骨移植物上表达骨钙素、骨桥蛋白、I 型胶原、骨粘连蛋白、BMP-2。这项研究证明了具有良好机械性能和成骨性能的纯纳米晶 HAp 的形成,这证明了蛋壳生物废物可成功用于合成具有良好机械性能和成骨性能的 HAp。这些发现可能对设计用于骨科组织再生的生物材料具有重要意义。©2017 Wiley Periodicals,Inc. J Biomed Mater Res Part A:105A:2935-2947,2017。