Prometheus, Division of Skeletal Tissue Engineering, and ∥Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven , Leuven 3000, Belgium.
Institut für Organische Chemie, Johannes Gutenberg-Universtität Mainz , Mainz 55099, Germany.
J Am Chem Soc. 2017 Jul 5;139(26):8995-9000. doi: 10.1021/jacs.7b03878. Epub 2017 Jun 22.
Controlling the number of monomers in a supramolecular polymer has been a great challenge in programmable self-assembly of organic molecules. One approach has been to make use of frustrated growth of the supramolecular assembly by tuning the balance of attractive and repulsive intermolecular forces. We report here on the use of covalent bond formation among monomers, compensating for intermolecular electrostatic repulsion, as a mechanism to control the length of a supramolecular nanofiber formed by self-assembly of peptide amphiphiles. Circular dichroism spectroscopy in combination with dynamic light scattering, size-exclusion chromatography, and transmittance electron microscope analyses revealed that hydrogen bonds between peptides were reinforced by covalent bond formation, enabling the fiber elongation. To examine these materials for their potential biomedical applications, cytotoxicity of nanofibers against C2C12 premyoblast cells was tested. We demonstrated that cell viability increased with an increase in fiber length, presumably because of the suppressed disruption of cell membranes by the fiber end-caps.
控制超分子聚合物中的单体数量一直是有机分子可编程自组装的一大挑战。一种方法是通过调节分子间吸引力和排斥力的平衡,利用超分子组装的受挫生长。我们在这里报告了在单体之间形成共价键,补偿分子间静电排斥,作为控制由肽两亲物自组装形成的超分子纳米纤维长度的机制。圆二色性光谱结合动态光散射、尺寸排阻色谱和透射电子显微镜分析表明,通过形成共价键增强了肽之间的氢键,从而使纤维伸长。为了研究这些材料在潜在的生物医学应用中的作用,我们测试了纳米纤维对 C2C12 前成肌细胞的细胞毒性。我们证明,细胞活力随着纤维长度的增加而增加,这可能是由于纤维末端抑制了细胞膜的破坏。