Suppr超能文献

在双体极限下相互作用的 Harper-Hofstadter 模型的显微镜观察。

Microscopy of the interacting Harper-Hofstadter model in the two-body limit.

机构信息

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

Nature. 2017 Jun 21;546(7659):519-523. doi: 10.1038/nature22811.

Abstract

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement. Although these phases were discovered in a solid-state setting, recent innovations in systems of ultracold neutral atoms-uncharged atoms that do not naturally experience a Lorentz force-allow the synthesis of artificial magnetic, or gauge, fields. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper-Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.

摘要

磁场和相互作用粒子之间的相互作用可以导致具有拓扑序和高度空间纠缠的奇异物质相。尽管这些相是在固态环境中发现的,但最近在超冷中性原子系统中的创新——不带电荷的原子,不会自然经历洛伦兹力——允许合成人工磁场或规范场。由于在冷原子系统中可以实现微观控制和精度,这个实验平台有望用于探索分数量子霍尔系统中的奇异物理。然而,到目前为止,这些实验主要探索了弱相互作用的范围,这排除了对相关多体状态的访问。在这里,我们通过微观原子控制和检测,展示了在具有手性能带结构的二体系统中控制地引入强相互作用的方法。我们观察并解释了粒子间相互作用如何在手性传播动力学中诱导手性,这种动力学由相互作用的哈伯-霍夫斯塔特模型(描述了磁场存在下的晶格限制、相干移动的粒子)控制。我们使用自下而上的策略来制备相互作用的手性量子态,从而避免了从多体系统开始的自上而下的方法所面临的挑战,多体系统的规模可能会阻碍控制态的制备。我们的实验平台结合了研究高度纠缠拓扑态所需的所有组成部分,我们的观察结果为分数量子霍尔区的未来实验提供了基准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验