Zhang Ning, Li Xiyu, Liu Yifei, Long Ran, Li Mengqiao, Chen Shuangming, Qi Zeming, Wang Chengming, Song Li, Jiang Jun, Xiong Yujie
Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), School of Chemistry and Materials Science, Hefei Science Center (CAS) and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
Small. 2017 Aug;13(31). doi: 10.1002/smll.201701354. Epub 2017 Jun 22.
Adsorption and activation of molecules on a surface holds the key to heterogeneous catalysis toward aerobic oxidative reactions. To achieve high catalytic activities, a catalyst surface should be rationally tailored to interact with both organic substrates and oxygen molecules. Here, a facile bottom-up approach to defective tungsten oxide hydrate (WO ·H O) nanosheets that contain both surface defects and lattice water is reported. The defective WO ·H O nanosheets exhibit excellent catalytic activity for aerobic coupling of amines to imines. The investigation indicates that the oxygen vacancies derived from surface defects supply coordinatively unsaturated sites to adsorb and activate oxygen molecules, producing superoxide radicals. More importantly, the Brønsted acid sites from lattice water can contribute to enhancing the adsorption and activation of alkaline amine molecules. The synergistic effect of oxygen vacancies and Brønsted acid sites eventually boosts the catalytic activity, which achieves a kinetic rate constant of 0.455 h and a turnover frequency of 0.85 h at 2 h, with the activation energy reduced to ≈35 kJ mol . This work provides a different angle for metal oxide catalyst design by maneuvering subtle structural features, and highlights the importance of synergistic effects to heterogeneous catalysts.
分子在表面的吸附和活化是实现有氧氧化反应多相催化的关键。为了获得高催化活性,催化剂表面应进行合理设计,使其既能与有机底物相互作用,又能与氧分子相互作用。在此,报道了一种简便的自下而上的方法来制备含有表面缺陷和晶格水的缺陷水合氧化钨(WO·H₂O)纳米片。这些缺陷WO·H₂O纳米片对胺氧化偶联生成亚胺表现出优异的催化活性。研究表明,表面缺陷产生的氧空位提供了配位不饱和位点,用于吸附和活化氧分子,生成超氧自由基。更重要的是,晶格水产生的布朗斯特酸位点有助于增强碱性胺分子的吸附和活化。氧空位和布朗斯特酸位点的协同作用最终提高了催化活性,在2小时时实现了0.455 h⁻¹的动力学速率常数和0.85 h⁻¹的周转频率,活化能降低至约35 kJ mol⁻¹。这项工作通过调控细微的结构特征为金属氧化物催化剂设计提供了一个不同的角度,并突出了协同效应对于多相催化剂的重要性。