Nederlof Rianne, Denis Simone, Lauzier Benjamin, Rosiers Christine Des, Laakso Markku, Hagen Jacob, Argmann Carmen, Wanders Ronald, Houtkooper Riekelt H, Hollmann Markus W, Houten Sander M, Zuurbier Coert J
Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Academic Medical Center, Amsterdam, The Netherlands.
Laboratory of Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, The Netherlands.
Metabolism. 2017 Jul;72:66-74. doi: 10.1016/j.metabol.2017.04.008. Epub 2017 Apr 21.
Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII.
METHODS/RESULTS: We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03μmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII hearts.
These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism.
心脏己糖激酶II(HKII)可在细胞质和线粒体之间转运,并随着缺血再灌注、糖尿病和心力衰竭等病理状态而改变其细胞表达。这些变化对心脏代谢的影响尚不清楚。在此,我们使用稳定同位素测量了细胞质和线粒体中的能量底物利用情况,并测量了完整灌注心脏的氧气消耗,以研究1)线粒体HKII(mtHKII)的急性减少,以及2)细胞总HKII的慢性减少。
方法/结果:我们首先研究了200nM TAT(转录激活因子)-HKII肽处理的效果,此前已证明该处理可使mtHKII急性减少约30%。在Langendorff灌注心脏中,TAT-HKII导致氧气消耗适度但显著增加,而心脏功能未改变。在代谢水平上,通过糖酵解生成丙酮酸和乳酸以及线粒体柠檬酸合酶通量的葡萄糖贡献有不显著(p=0.076)的约40%下降(6.6±1.1%对11.2±2.2%),组织丙酮酸增加35%(27±2对20±2pmol/mg;p=0.033)。其次,我们比较了野生型(WT)和HKII基因敲除心脏(总HKII慢性减少50%)。RNA测序显示WT和HKII基因敲除心脏之间没有差异基因表达,表明在转录水平上不存在代谢重编程。Langendorff灌注心脏在糖酵解(0.34±0.03μmol/分钟)、葡萄糖对柠檬酸合酶通量的贡献(35±2.3%)、棕榈酸对柠檬酸合酶通量的贡献(20±1.1%)、氧气消耗或机械性能方面,WT和HKII基因敲除心脏之间没有显著差异。
这些结果表明,线粒体HKII的急性(尽管不是慢性)变化会适度影响心脏的氧气消耗和能量底物代谢。