Suppr超能文献

选择群体下单步基因组预测的准确性和偏差

The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection.

作者信息

Hsu Wan-Ling, Garrick Dorian J, Fernando Rohan L

机构信息

Department of Animal Science, Iowa State University, Ames, Iowa 50011.

Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand.

出版信息

G3 (Bethesda). 2017 Aug 7;7(8):2685-2694. doi: 10.1534/g3.117.043596.

Abstract

In single-step analyses, missing genotypes are explicitly or implicitly imputed, and this requires centering the observed genotypes using the means of the unselected founders. If genotypes are only available for selected individuals, centering on the unselected founder mean is not straightforward. Here, computer simulation is used to study an alternative analysis that does not require centering genotypes but fits the mean [Formula: see text] of unselected individuals as a fixed effect. Starting with observed diplotypes from 721 cattle, a five-generation population was simulated with sire selection to produce 40,000 individuals with phenotypes, of which the 1000 sires had genotypes. The next generation of 8000 genotyped individuals was used for validation. Evaluations were undertaken with (J) or without (N) [Formula: see text] when marker covariates were not centered; and with (JC) or without (C) [Formula: see text] when all observed and imputed marker covariates were centered. Centering did not influence accuracy of genomic prediction, but fitting [Formula: see text] did. Accuracies were improved when the panel comprised only quantitative trait loci (QTL); models JC and J had accuracies of 99.4%, whereas models C and N had accuracies of 90.2%. When only markers were in the panel, the 4 models had accuracies of 80.4%. In panels that included QTL, fitting [Formula: see text] in the model improved accuracy, but had little impact when the panel contained only markers. In populations undergoing selection, fitting [Formula: see text] in the model is recommended to avoid bias and reduction in prediction accuracy due to selection.

摘要

在单步分析中,缺失基因型会被显式或隐式地估算,这需要使用未被选择的奠基者的均值对观察到的基因型进行中心化处理。如果基因型仅适用于选定的个体,以未被选择的奠基者均值进行中心化处理并非易事。在此,通过计算机模拟来研究一种无需对基因型进行中心化处理的替代分析方法,而是将未被选择个体的均值[公式:见正文]作为固定效应进行拟合。从721头牛的观察到的双倍型开始,模拟了一个五代群体,通过父系选择产生了40,000个具有表型的个体,其中1000个父系具有基因型。下一代的8000个基因型个体用于验证。当标记协变量未进行中心化处理时,分别在有(J)或无(N)[公式:见正文]的情况下进行评估;当所有观察到的和估算的标记协变量都进行了中心化处理时,分别在有(JC)或无(C)[公式:见正文]的情况下进行评估。中心化处理不会影响基因组预测的准确性,但拟合[公式:见正文]会产生影响。当面板仅包含数量性状位点(QTL)时,准确性会提高;模型JC和J的准确率为99.4%,而模型C和N的准确率为90.2%。当面板中仅包含标记时,这4个模型的准确率为80.4%。在包含QTL的面板中,在模型中拟合[公式:见正文]可提高准确性,但当面板仅包含标记时影响较小。在正在进行选择的群体中,建议在模型中拟合[公式:见正文]以避免由于选择导致的偏差和预测准确性降低。

相似文献

引用本文的文献

本文引用的文献

3
Selection on selected records.对选定记录进行选择。
Genet Sel Evol (1983). 1983;15(1):91-8. doi: 10.1186/1297-9686-15-1-91.
4
Single-step methods for genomic evaluation in pigs.猪基因组评估的单步法。
Animal. 2012 Oct;6(10):1565-71. doi: 10.1017/S1751731112000742. Epub 2012 Apr 5.
5
Bias in genomic predictions for populations under selection.选择作用下群体基因组预测中的偏差。
Genet Res (Camb). 2011 Oct;93(5):357-66. doi: 10.1017/S001667231100022X. Epub 2011 Jul 18.
6
Allele coding in genomic evaluation.基因组评估中的等位基因编码
Genet Sel Evol. 2011 Jun 26;43(1):25. doi: 10.1186/1297-9686-43-25.
10
Efficient methods to compute genomic predictions.计算基因组预测的有效方法。
J Dairy Sci. 2008 Nov;91(11):4414-23. doi: 10.3168/jds.2007-0980.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验