Suppr超能文献

选择群体下单步基因组预测的准确性和偏差

The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection.

作者信息

Hsu Wan-Ling, Garrick Dorian J, Fernando Rohan L

机构信息

Department of Animal Science, Iowa State University, Ames, Iowa 50011.

Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand.

出版信息

G3 (Bethesda). 2017 Aug 7;7(8):2685-2694. doi: 10.1534/g3.117.043596.

Abstract

In single-step analyses, missing genotypes are explicitly or implicitly imputed, and this requires centering the observed genotypes using the means of the unselected founders. If genotypes are only available for selected individuals, centering on the unselected founder mean is not straightforward. Here, computer simulation is used to study an alternative analysis that does not require centering genotypes but fits the mean [Formula: see text] of unselected individuals as a fixed effect. Starting with observed diplotypes from 721 cattle, a five-generation population was simulated with sire selection to produce 40,000 individuals with phenotypes, of which the 1000 sires had genotypes. The next generation of 8000 genotyped individuals was used for validation. Evaluations were undertaken with (J) or without (N) [Formula: see text] when marker covariates were not centered; and with (JC) or without (C) [Formula: see text] when all observed and imputed marker covariates were centered. Centering did not influence accuracy of genomic prediction, but fitting [Formula: see text] did. Accuracies were improved when the panel comprised only quantitative trait loci (QTL); models JC and J had accuracies of 99.4%, whereas models C and N had accuracies of 90.2%. When only markers were in the panel, the 4 models had accuracies of 80.4%. In panels that included QTL, fitting [Formula: see text] in the model improved accuracy, but had little impact when the panel contained only markers. In populations undergoing selection, fitting [Formula: see text] in the model is recommended to avoid bias and reduction in prediction accuracy due to selection.

摘要

在单步分析中,缺失基因型会被显式或隐式地估算,这需要使用未被选择的奠基者的均值对观察到的基因型进行中心化处理。如果基因型仅适用于选定的个体,以未被选择的奠基者均值进行中心化处理并非易事。在此,通过计算机模拟来研究一种无需对基因型进行中心化处理的替代分析方法,而是将未被选择个体的均值[公式:见正文]作为固定效应进行拟合。从721头牛的观察到的双倍型开始,模拟了一个五代群体,通过父系选择产生了40,000个具有表型的个体,其中1000个父系具有基因型。下一代的8000个基因型个体用于验证。当标记协变量未进行中心化处理时,分别在有(J)或无(N)[公式:见正文]的情况下进行评估;当所有观察到的和估算的标记协变量都进行了中心化处理时,分别在有(JC)或无(C)[公式:见正文]的情况下进行评估。中心化处理不会影响基因组预测的准确性,但拟合[公式:见正文]会产生影响。当面板仅包含数量性状位点(QTL)时,准确性会提高;模型JC和J的准确率为99.4%,而模型C和N的准确率为90.2%。当面板中仅包含标记时,这4个模型的准确率为80.4%。在包含QTL的面板中,在模型中拟合[公式:见正文]可提高准确性,但当面板仅包含标记时影响较小。在正在进行选择的群体中,建议在模型中拟合[公式:见正文]以避免由于选择导致的偏差和预测准确性降低。

相似文献

1
The Accuracy and Bias of Single-Step Genomic Prediction for Populations Under Selection.
G3 (Bethesda). 2017 Aug 7;7(8):2685-2694. doi: 10.1534/g3.117.043596.
3
Empirical and deterministic accuracies of across-population genomic prediction.
Genet Sel Evol. 2015 Feb 6;47(1):5. doi: 10.1186/s12711-014-0086-0.
7
Using markers with large effect in genetic and genomic predictions.
J Anim Sci. 2017 Jan;95(1):59-71. doi: 10.2527/jas.2016.0754.
8
Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models.
J Anim Sci. 2013 Sep;91(9):4090-8. doi: 10.2527/jas.2012-5826. Epub 2013 Jul 26.

引用本文的文献

1
An effective hyper-parameter can increase the prediction accuracy in a single-step genetic evaluation.
Front Genet. 2023 Jun 8;14:1104906. doi: 10.3389/fgene.2023.1104906. eCollection 2023.
6
International single-step SNPBLUP beef cattle evaluations for Limousin weaning weight.
Genet Sel Evol. 2022 Sep 4;54(1):57. doi: 10.1186/s12711-022-00748-0.
7
Impact of genomic preselection on subsequent genetic evaluations with ssGBLUP using real data from pigs.
Genet Sel Evol. 2022 Jun 28;54(1):48. doi: 10.1186/s12711-022-00727-5.
9
Single-step genomic BLUP with genetic groups and automatic adjustment for allele coding.
Genet Sel Evol. 2022 Jun 2;54(1):38. doi: 10.1186/s12711-022-00721-x.
10
Application of Bayesian genomic prediction methods to genome-wide association analyses.
Genet Sel Evol. 2022 May 13;54(1):31. doi: 10.1186/s12711-022-00724-8.

本文引用的文献

1
A fast and efficient Gibbs sampler for BayesB in whole-genome analyses.
Genet Sel Evol. 2015 Oct 14;47:80. doi: 10.1186/s12711-015-0157-x.
3
Selection on selected records.
Genet Sel Evol (1983). 1983;15(1):91-8. doi: 10.1186/1297-9686-15-1-91.
4
Single-step methods for genomic evaluation in pigs.
Animal. 2012 Oct;6(10):1565-71. doi: 10.1017/S1751731112000742. Epub 2012 Apr 5.
5
Bias in genomic predictions for populations under selection.
Genet Res (Camb). 2011 Oct;93(5):357-66. doi: 10.1017/S001667231100022X. Epub 2011 Jul 18.
6
Allele coding in genomic evaluation.
Genet Sel Evol. 2011 Jun 26;43(1):25. doi: 10.1186/1297-9686-43-25.
8
Genomic prediction when some animals are not genotyped.
Genet Sel Evol. 2010 Jan 27;42(1):2. doi: 10.1186/1297-9686-42-2.
9
A relationship matrix including full pedigree and genomic information.
J Dairy Sci. 2009 Sep;92(9):4656-63. doi: 10.3168/jds.2009-2061.
10
Efficient methods to compute genomic predictions.
J Dairy Sci. 2008 Nov;91(11):4414-23. doi: 10.3168/jds.2007-0980.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验