Suppr超能文献

轮回基因组选择下合成群体中预测准确性和遗传增益的持续性

Persistency of Prediction Accuracy and Genetic Gain in Synthetic Populations Under Recurrent Genomic Selection.

作者信息

Müller Dominik, Schopp Pascal, Melchinger Albrecht E

机构信息

Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany.

Institute of Plant Breeding, Seed Sciences and Population Genetics, University of Hohenheim, 70599 Stuttgart, Germany

出版信息

G3 (Bethesda). 2017 Mar 10;7(3):801-811. doi: 10.1534/g3.116.036582.

Abstract

Recurrent selection (RS) has been used in plant breeding to successively improve synthetic and other multiparental populations. Synthetics are generated from a limited number of parents [Formula: see text] but little is known about how [Formula: see text] affects genomic selection (GS) in RS, especially the persistency of prediction accuracy ([Formula: see text]) and genetic gain. Synthetics were simulated by intermating [Formula: see text]= 2-32 parent lines from an ancestral population with short- or long-range linkage disequilibrium ([Formula: see text]) and subjected to multiple cycles of GS. We determined [Formula: see text] and genetic gain across 30 cycles for different training set () sizes, marker densities, and generations of recombination before model training. Contributions to [Formula: see text] and genetic gain from pedigree relationships, as well as from cosegregation and [Formula: see text] between QTL and markers, were analyzed via four scenarios differing in (i) the relatedness between and selection candidates and (ii) whether selection was based on markers or pedigree records. Persistency of [Formula: see text] was high for small [Formula: see text] where predominantly cosegregation contributed to [Formula: see text], but also for large [Formula: see text] where [Formula: see text] replaced cosegregation as the dominant information source. Together with increasing genetic variance, this compensation resulted in relatively constant long- and short-term genetic gain for increasing [Formula: see text] > 4, given long-range LD in the ancestral population. Although our scenarios suggest that information from pedigree relationships contributed to [Formula: see text] for only very few generations in GS, we expect a longer contribution than in pedigree BLUP, because capturing Mendelian sampling by markers reduces selective pressure on pedigree relationships. Larger size ([Formula: see text]) and higher marker density improved persistency of [Formula: see text] and hence genetic gain, but additional recombinations could not increase genetic gain.

摘要

轮回选择(RS)已被用于植物育种,以连续改良合成群体和其他多亲群体。合成群体由有限数量的亲本产生[公式:见正文],但关于[公式:见正文]如何影响RS中的基因组选择(GS),尤其是预测准确性([公式:见正文])的持续性和遗传增益,人们了解甚少。通过将来自具有短程或长程连锁不平衡([公式:见正文])的祖先群体的[公式:见正文]=2 - 32个亲本系进行互交来模拟合成群体,并对其进行多轮GS。我们针对不同的训练集()大小、标记密度以及模型训练前的重组世代,确定了30个轮回中的[公式:见正文]和遗传增益。通过四种不同的情景分析了系谱关系以及QTL与标记之间的共分离和[公式:见正文]对[公式:见正文]和遗传增益的贡献,这四种情景在(i)训练群体与选择候选个体之间的亲缘关系以及(ii)选择是基于标记还是系谱记录方面存在差异。对于较小的[公式:见正文],[公式:见正文]的持续性较高(主要是共分离对[公式:见正文]有贡献),对于较大的[公式:见正文]也是如此(此时[公式:见正文]取代共分离成为主要信息来源)。在祖先群体存在长程连锁不平衡的情况下,随着遗传方差的增加,这种补偿使得对于[公式:见正文]>4的情况,长期和短期遗传增益相对恒定。尽管我们的情景表明在GS中系谱关系信息对[公式:见正文]的贡献仅持续很少几代,但我们预计其贡献时间会比系谱最佳线性无偏预测(BLUP)更长,因为通过标记捕获孟德尔抽样会降低对系谱关系的选择压力。更大的训练群体大小([公式:见正文])和更高的标记密度提高了[公式:见正文]的持续性,从而提高了遗传增益,但额外的重组并不能增加遗传增益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc36/5345710/96e05529b68e/801f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验