Subramaniam Sudhakar R, Federoff Howard J
Department of Neurology, University of California, Irvine, Irvine, CAUnited States.
Front Aging Neurosci. 2017 Jun 8;9:176. doi: 10.3389/fnagi.2017.00176. eCollection 2017.
Parkinson's disease (PD) is a chronic and progressive disorder characterized neuropathologically by loss of dopamine neurons in the substantia nigra, intracellular proteinaceous inclusions, reduction of dopaminergic terminals in the striatum, and increased neuroinflammatory cells. The consequent reduction of dopamine in the basal ganglia results in the classical parkinsonian motor phenotype. A growing body of evidence suggest that neuroinflammation mediated by microglia, the resident macrophage-like immune cells in the brain, play a contributory role in PD pathogenesis. Microglia participate in both physiological and pathological conditions. In the former, microglia restore the integrity of the central nervous system and, in the latter, they promote disease progression. Microglia acquire different activation states to modulate these cellular functions. Upon activation to the M1 phenotype, microglia elaborate pro-inflammatory cytokines and neurotoxic molecules promoting inflammation and cytotoxic responses. In contrast, when adopting the M2 phenotype microglia secrete anti-inflammatory gene products and trophic factors that promote repair, regeneration, and restore homeostasis. Relatively little is known about the different microglial activation states in PD and a better understanding is essential for developing putative neuroprotective agents. Targeting microglial activation states by suppressing their deleterious pro-inflammatory neurotoxicity and/or simultaneously enhancing their beneficial anti-inflammatory protective functions appear as a valid therapeutic approach for PD treatment. In this review, we summarize microglial functions and, their dual neurotoxic and neuroprotective role in PD. We also review molecules that modulate microglial activation states as a therapeutic option for PD treatment.
帕金森病(PD)是一种慢性进行性疾病,其神经病理学特征为黑质中多巴胺能神经元丧失、细胞内蛋白质包涵体形成、纹状体中多巴胺能终末减少以及神经炎症细胞增多。基底神经节中多巴胺的减少导致了典型的帕金森运动表型。越来越多的证据表明,由小胶质细胞介导的神经炎症在帕金森病发病机制中起作用,小胶质细胞是大脑中类似巨噬细胞的常驻免疫细胞。小胶质细胞参与生理和病理状态。在前者中,小胶质细胞恢复中枢神经系统的完整性,而在后者中,它们促进疾病进展。小胶质细胞获得不同的激活状态来调节这些细胞功能。激活为M1表型时,小胶质细胞会分泌促炎细胞因子和神经毒性分子,促进炎症和细胞毒性反应。相反,当呈现M2表型时,小胶质细胞分泌抗炎基因产物和营养因子,促进修复、再生并恢复内环境稳定。关于帕金森病中不同的小胶质细胞激活状态,人们了解相对较少,更好地理解这一点对于开发潜在的神经保护剂至关重要。通过抑制其有害的促炎神经毒性和/或同时增强其有益的抗炎保护功能来靶向小胶质细胞激活状态,似乎是帕金森病治疗的一种有效方法。在这篇综述中,我们总结了小胶质细胞的功能及其在帕金森病中的双重神经毒性和神经保护作用。我们还综述了调节小胶质细胞激活状态作为帕金森病治疗选择的分子。