Suppr超能文献

植物蛋白中的结构紊乱:可塑性与固着性的交汇之处

Structural disorder in plant proteins: where plasticity meets sessility.

作者信息

Covarrubias Alejandra A, Cuevas-Velazquez Cesar L, Romero-Pérez Paulette S, Rendón-Luna David F, Chater Caspar C C

机构信息

Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico.

出版信息

Cell Mol Life Sci. 2017 Sep;74(17):3119-3147. doi: 10.1007/s00018-017-2557-2. Epub 2017 Jun 22.

Abstract

Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.

摘要

植物是固着生物。这种有趣的特性引发了一个问题:尽管它们不断变化的环境会持续造成干扰,它们是如何生存下来的。迄今为止积累的大量知识展示了迷人的动态和可塑性机制,这些机制支撑着植物为应对波动环境而选择的多样策略。这种表型可塑性需要将外部线索有效地整合到它们的生长和发育程序中,而这只能通过各种信号网络的动态和交互协调来实现。鉴于蛋白质内在结构无序的多样性,这一特征似乎是此类复杂功能回路的主要特征之一,对植物在其自然栖息地的适应和生存至关重要。在这篇综述中,我们展示了来自植物的那些内在无序蛋白(IDP)的信息,对于这些蛋白,其高度预测的结构无序已与特定功能相关联,或者有实验证据将这种结构特征与其蛋白质功能联系起来。通过参与细胞周期控制、代谢、激素信号传导以及基因表达调控、发育和应激反应的植物IDP的例子,我们证明了IDP在植物整个生命周期中的至关重要性。

相似文献

1
Structural disorder in plant proteins: where plasticity meets sessility.
Cell Mol Life Sci. 2017 Sep;74(17):3119-3147. doi: 10.1007/s00018-017-2557-2. Epub 2017 Jun 22.
2
The functional diversity of structural disorder in plant proteins.
Arch Biochem Biophys. 2020 Feb 15;680:108229. doi: 10.1016/j.abb.2019.108229. Epub 2019 Dec 20.
4
Towards an understanding of the role of intrinsic protein disorder on plant adaptation to environmental challenges.
Cell Stress Chaperones. 2021 Jan;26(1):141-150. doi: 10.1007/s12192-020-01162-5. Epub 2020 Sep 9.
5
Multifarious roles of intrinsic disorder in proteins illustrate its broad impact on plant biology.
Plant Cell. 2013 Jan;25(1):38-55. doi: 10.1105/tpc.112.106062. Epub 2013 Jan 29.
6
Group 4 late embryogenesis abundant proteins as a model to study intrinsically disordered proteins in plants.
Plant Signal Behav. 2017 Jul 3;12(7):e1343777. doi: 10.1080/15592324.2017.1343777. Epub 2017 Jun 26.
7
Intrinsic disorder here, there, and everywhere, and nowhere to escape from it.
Cell Mol Life Sci. 2017 Sep;74(17):3065-3067. doi: 10.1007/s00018-017-2554-5. Epub 2017 Jun 6.
8
Common Functions of Disordered Proteins across Evolutionary Distant Organisms.
Int J Mol Sci. 2020 Mar 19;21(6):2105. doi: 10.3390/ijms21062105.
9
Intrinsic Disorder in Plant Transcription Factor Systems: Functional Implications.
Int J Mol Sci. 2020 Dec 21;21(24):9755. doi: 10.3390/ijms21249755.
10
Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14.
Int J Mol Sci. 2021 Jun 8;22(12):6190. doi: 10.3390/ijms22126190.

引用本文的文献

1
Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma.
Biophys Rev (Melville). 2022 Mar 17;3(1):011306. doi: 10.1063/5.0080512. eCollection 2022 Mar.
4
An overview of descriptors to capture protein properties - Tools and perspectives in the context of QSAR modeling.
Comput Struct Biotechnol J. 2023 May 24;21:3234-3247. doi: 10.1016/j.csbj.2023.05.022. eCollection 2023.
6
Intrinsically disordered proteins and conformational noise: The hypothesis a decade later.
iScience. 2023 Jun 15;26(7):107109. doi: 10.1016/j.isci.2023.107109. eCollection 2023 Jul 21.
7
Enrichment of intrinsically disordered residues in ohnologs facilitates abiotic stress resilience in Brassica rapa.
J Plant Res. 2023 Mar;136(2):239-251. doi: 10.1007/s10265-022-01432-6. Epub 2023 Jan 6.
8
Not Only Systemin: Prosystemin Harbors Other Active Regions Able to Protect Tomato Plants.
Front Plant Sci. 2022 May 24;13:887674. doi: 10.3389/fpls.2022.887674. eCollection 2022.
9
Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status.
Front Plant Sci. 2022 May 24;13:904446. doi: 10.3389/fpls.2022.904446. eCollection 2022.
10
Out of the Dark and Into the Light: A New View of Phytochrome Photobodies.
Front Plant Sci. 2021 Aug 31;12:732947. doi: 10.3389/fpls.2021.732947. eCollection 2021.

本文引用的文献

2
Phosphorylation of MAP65-1 by Arabidopsis Aurora Kinases Is Required for Efficient Cell Cycle Progression.
Plant Physiol. 2017 Jan;173(1):582-599. doi: 10.1104/pp.16.01602. Epub 2016 Nov 22.
3
Structure and function of PspA and Vipp1 N-terminal peptides: Insights into the membrane stress sensing and mitigation.
Biochim Biophys Acta Biomembr. 2017 Jan;1859(1):28-39. doi: 10.1016/j.bbamem.2016.10.018. Epub 2016 Oct 30.
5
The Argonaute-binding platform of NRPE1 evolves through modulation of intrinsically disordered repeats.
New Phytol. 2016 Dec;212(4):1094-1105. doi: 10.1111/nph.14089. Epub 2016 Jul 19.
6
Photocycle and signaling mechanisms of plant cryptochromes.
Curr Opin Plant Biol. 2016 Oct;33:108-115. doi: 10.1016/j.pbi.2016.06.013. Epub 2016 Jul 14.
7
The Phage Shock Protein Response.
Annu Rev Microbiol. 2016 Sep 8;70:83-101. doi: 10.1146/annurev-micro-102215-095359. Epub 2016 Jun 8.
8
Membrane-Induced Folding of the Plant Stress Dehydrin Lti30.
Plant Physiol. 2016 Jun;171(2):932-43. doi: 10.1104/pp.15.01531. Epub 2016 Apr 26.
9
VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress.
Plant Physiol. 2016 Jul;171(3):1983-95. doi: 10.1104/pp.16.00532. Epub 2016 May 12.
10
Luminidependens (LD) is an Arabidopsis protein with prion behavior.
Proc Natl Acad Sci U S A. 2016 May 24;113(21):6065-70. doi: 10.1073/pnas.1604478113. Epub 2016 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验