Han Summer S, Rivera Gabriel A, Tammemägi Martin C, Plevritis Sylvia K, Gomez Scarlett L, Cheng Iona, Wakelee Heather A
Summer S. Han, Sylvia K. Plevritis, and Heather A. Wakelee, Stanford University School of Medicine; Summer S. Han, Sylvia K. Plevritis, Scarlett L. Gomez, Iona Cheng, and Heather A. Wakelee, Stanford Cancer Institute; Heather A. Wakelee and Gabriel A. Rivera, Stanford University Department of Medicine, Division of Oncology, Stanford; Gabriel A. Rivera, Kaiser Permanente Fresno Medical Center, Fresno; Scarlett L. Gomez and Iona Cheng, Cancer Prevention Institute of California, Fremont, CA; and Martin C. Tammemägi, Brock University, St Catharines, Ontario, Canada.
J Clin Oncol. 2017 Sep 1;35(25):2893-2899. doi: 10.1200/JCO.2017.72.4203. Epub 2017 Jun 23.
Purpose This study estimated the 10-year risk of developing second primary lung cancer (SPLC) among survivors of initial primary lung cancer (IPLC) and evaluated the clinical utility of the risk prediction model for selecting eligibility criteria for screening. Methods SEER data were used to identify a population-based cohort of 20,032 participants diagnosed with IPLC between 1988 and 2003 and who survived ≥ 5 years after the initial diagnosis. We used a proportional subdistribution hazards model to estimate the 10-year risk of developing SPLC among survivors of lung cancer LC in the presence of competing risks. Considered predictors included age, sex, race, treatment, histology, stage, and extent of disease. We examined the risk-stratification ability of the prediction model and performed decision curve analysis to evaluate the clinical utility of the model by calculating its net benefit in varied risk thresholds for screening. Results Although the median 10-year risk of SPLC among survivors of LC was 8.36%, the estimated risk varied substantially (range, 0.56% to 14.3%) when stratified by age, histology, and extent of IPLC in the final prediction model. The stratification by deciles of estimated risk showed that the observed incidence of SPLC was significantly higher in the tenth-decile group (12.5%) versus the first-decile group (2.9%; P < 10). The decision curve analysis yielded a range of risk thresholds (1% to 11.5%) at which the clinical net benefit of the risk model was larger than those in hypothetical all-screening or no-screening scenarios. Conclusion The risk stratification approach in SPLC can be potentially useful for identifying survivors of LC to be screened by computed tomography. More comprehensive environmental and genetic data may help enhance the predictability and stratification ability of the risk model for SPLC.
目的 本研究估计了原发性肺癌(IPLC)幸存者发生第二原发性肺癌(SPLC)的10年风险,并评估了风险预测模型在选择筛查资格标准方面的临床实用性。方法 利用监测、流行病学和最终结果(SEER)数据,确定了一个基于人群的队列,其中包括20032名在1988年至2003年间被诊断为IPLC且在初次诊断后存活≥5年的参与者。我们使用比例子分布风险模型来估计在存在竞争风险的情况下肺癌(LC)幸存者发生SPLC的10年风险。考虑的预测因素包括年龄、性别、种族、治疗、组织学、分期和疾病范围。我们检查了预测模型的风险分层能力,并进行决策曲线分析,通过计算其在不同筛查风险阈值下的净效益来评估模型的临床实用性。结果 尽管LC幸存者中SPLC的10年中位风险为8.36%,但在最终预测模型中,按年龄、组织学和IPLC范围分层时,估计风险差异很大(范围为0.56%至14.3%)。按估计风险十分位数分层显示,第十分位组(12.5%)的SPLC观察发病率显著高于第一分位组(2.9%;P<0.001)。决策曲线分析得出了一系列风险阈值(1%至11.5%),在这些阈值下,风险模型的临床净效益大于假设的全筛查或不筛查方案。结论 SPLC中的风险分层方法可能有助于识别需要进行计算机断层扫描筛查的LC幸存者。更全面的环境和遗传数据可能有助于提高SPLC风险模型的预测性和分层能力。