Suppr超能文献

当假阴性较少时,诊断研究中用于校正验证偏倚的统计方法并不充分:一项模拟研究

Statistical methods to correct for verification bias in diagnostic studies are inadequate when there are few false negatives: a simulation study.

作者信息

Cronin Angel M, Vickers Andrew J

机构信息

Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, NY, NY 10021, USA.

出版信息

BMC Med Res Methodol. 2008 Nov 11;8:75. doi: 10.1186/1471-2288-8-75.

Abstract

BACKGROUND

A common feature of diagnostic research is that results for a diagnostic gold standard are available primarily for patients who are positive for the test under investigation. Data from such studies are subject to what has been termed "verification bias". We evaluated statistical methods for verification bias correction when there are few false negatives.

METHODS

A simulation study was conducted of a screening study subject to verification bias. We compared estimates of the area-under-the-curve (AUC) corrected for verification bias varying both the rate and mechanism of verification.

RESULTS

In a single simulated data set, varying false negatives from 0 to 4 led to verification bias corrected AUCs ranging from 0.550 to 0.852. Excess variation associated with low numbers of false negatives was confirmed in simulation studies and by analyses of published studies that incorporated verification bias correction. The 2.5th - 97.5th centile range constituted as much as 60% of the possible range of AUCs for some simulations.

CONCLUSION

Screening programs are designed such that there are few false negatives. Standard statistical methods for verification bias correction are inadequate in this circumstance.

摘要

背景

诊断研究的一个常见特征是,诊断金标准的结果主要适用于正在接受研究的检测呈阳性的患者。此类研究的数据存在所谓的“验证偏倚”。当假阴性较少时,我们评估了用于校正验证偏倚的统计方法。

方法

针对一项存在验证偏倚的筛查研究进行了模拟研究。我们比较了针对验证偏倚校正后的曲线下面积(AUC)估计值,同时改变了验证的速率和机制。

结果

在单个模拟数据集中,假阴性从0变化到4会导致校正验证偏倚后的AUC值在0.550至0.852之间。在模拟研究以及对纳入验证偏倚校正的已发表研究的分析中,均证实了与少量假阴性相关的过度变异。对于某些模拟,第2.5百分位数至第97.5百分位数范围占AUC可能范围的比例高达60%。

结论

筛查项目的设计使得假阴性较少。在这种情况下,用于校正验证偏倚的标准统计方法并不充分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6ed/2600821/7b78590aafa9/1471-2288-8-75-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验