Suppr超能文献

优化从电子病历中识别艾滋病毒感染者:可计算表型的开发和验证。

Optimizing Identification of People Living with HIV from Electronic Medical Records: Computable Phenotype Development and Validation.

机构信息

Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, Florida, United States.

Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, United States.

出版信息

Methods Inf Med. 2021 Sep;60(3-04):84-94. doi: 10.1055/s-0041-1735619. Epub 2021 Sep 30.

Abstract

BACKGROUND

Electronic health record (EHR)-based computable phenotype algorithms allow researchers to efficiently identify a large virtual cohort of Human Immunodeficiency Virus (HIV) patients. Built upon existing algorithms, we refined, improved, and validated an HIV phenotype algorithm using data from the OneFlorida Data Trust, a repository of linked claims data and EHRs from its clinical partners, which provide care to over 15 million patients across all 67 counties in Florida.

METHODS

Our computable phenotype examined information from multiple EHR domains, including clinical encounters with diagnoses, prescription medications, and laboratory tests. To identify an HIV case, the algorithm requires the patient to have at least one diagnostic code for HIV and meet one of the following criteria: have 1+ positive HIV laboratory, have been prescribed with HIV medications, or have 3+ visits with HIV diagnostic codes. The computable phenotype was validated against a subset of clinical notes.

RESULTS

Among the 15+ million patients from OneFlorida, we identified 61,313 patients with confirmed HIV diagnosis. Among them, 8.05% met all four inclusion criteria, 69.7% met the 3+ HIV encounters criteria in addition to having HIV diagnostic code, and 8.1% met all criteria except for having positive laboratories. Our algorithm achieved higher sensitivity (98.9%) and comparable specificity (97.6%) relative to existing algorithms (77-83% sensitivity, 86-100% specificity). The mean age of the sample was 42.7 years, 58% male, and about half were Black African American. Patients' average follow-up period (the time between the first and last encounter in the EHRs) was approximately 4.6 years. The median number of all encounters and HIV-related encounters were 79 and 21, respectively.

CONCLUSION

By leveraging EHR data from multiple clinical partners and domains, with a considerably diverse population, our algorithm allows more flexible criteria for identifying patients with incomplete laboratory test results and medication prescribing history compared with prior studies.

摘要

背景

基于电子健康记录(EHR)的可计算表型算法允许研究人员有效地识别大量虚拟的人类免疫缺陷病毒(HIV)患者队列。我们在现有的算法基础上,利用 OneFlorida Data Trust 的数据对 HIV 表型算法进行了改进、优化和验证,OneFlorida Data Trust 是一个包含来自其临床合作伙伴的链接索赔数据和 EHR 的存储库,这些合作伙伴为佛罗里达州所有 67 个县的超过 1500 万名患者提供护理。

方法

我们的可计算表型检查了多个 EHR 领域的信息,包括临床就诊时的诊断、处方药物和实验室检查。为了识别 HIV 病例,该算法要求患者至少有一个 HIV 诊断代码,并满足以下标准之一:有 1+阳性 HIV 实验室结果、有 HIV 药物处方、或有 3+次 HIV 诊断代码就诊。该可计算表型通过临床记录的子集进行验证。

结果

在 OneFlorida 的 1500 多万名患者中,我们确定了 61313 名确诊 HIV 诊断的患者。其中,8.05%的患者符合所有四项纳入标准,69.7%的患者除了 HIV 诊断代码外,还符合 3+次 HIV 就诊标准,8.1%的患者除了没有阳性实验室结果外,其他标准均符合。与现有算法(77-83%的敏感性,86-100%的特异性)相比,我们的算法具有更高的敏感性(98.9%)和相当的特异性(97.6%)。样本的平均年龄为 42.7 岁,58%为男性,约一半为黑非洲裔美国人。患者的平均随访期(EHR 中首次和末次就诊之间的时间)约为 4.6 年。所有就诊和 HIV 相关就诊的中位数分别为 79 和 21。

结论

通过利用来自多个临床合作伙伴和多个领域的 EHR 数据,我们的算法在识别实验室检查结果和药物处方历史记录不完整的患者时,可以使用更灵活的标准,与以前的研究相比,这具有更高的灵活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验