Suppr超能文献

OpenNFT:一个基于活动、连通性和多变量模式分析的用于实时功能磁共振成像神经反馈训练的开源Python/Matlab框架。

OpenNFT: An open-source Python/Matlab framework for real-time fMRI neurofeedback training based on activity, connectivity and multivariate pattern analysis.

作者信息

Koush Yury, Ashburner John, Prilepin Evgeny, Sladky Ronald, Zeidman Peter, Bibikov Sergei, Scharnowski Frank, Nikonorov Artem, De Ville Dimitri Van

机构信息

Department of Radiology and Medical Imaging, Yale University, New Haven, USA; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Campus Biotech, Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.

Wellcome Trust Centre for Neuroimaging, University College London, London, UK.

出版信息

Neuroimage. 2017 Aug 1;156:489-503. doi: 10.1016/j.neuroimage.2017.06.039. Epub 2017 Jun 21.

Abstract

Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users.

摘要

基于实时功能磁共振成像(rt-fMRI)的神经反馈是一个新兴且发展迅速的研究领域。它能够训练对局部脑活动和连接性的自主控制,并已展现出颇具前景的临床应用。由于MRI技术的快速发展以及高性能计算的可得性,rt-fMRI神经反馈在方法学上取得新进展成为可能。在此,我们概述了一种名为开放式神经反馈训练(OpenNFT)的新型开源神经反馈框架的核心组件,该框架有效地整合了这些新进展。此框架使用Python和Matlab源代码实现,以根据用户需求实现软件的多样功能、高模块化和快速可扩展性。此外,它为同样开源且是最广泛使用的fMRI数据分析软件之一的统计参数映射(SPM)的功能提供了一个简易接口。我们通过描述案例研究来展示新框架的功能,这些案例研究包括基于脑活动水平、有效连接模型和模式分类方法的神经反馈方案。这一开源举措提供了一个合适的框架,以积极推动新型神经反馈方法的开发,从而使更广泛的用户能够轻松获取局部方法学的进展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验