Hagen McKenzie P, Provins Céline, MacNicol Eilidh, Li Jamie K, Gomez Teresa, Garcia Mélanie, Seeley Saren H, Legarreta Jon Haitz, Norgaard Martin, Bissett Patrick G, Poldrack Russell A, Rokem Ariel, Esteban Oscar
Department of Psychology, University of Washington, Seattle, WA, USA.
Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
bioRxiv. 2024 Oct 22:2024.10.21.619532. doi: 10.1101/2024.10.21.619532.
Quality control of MRI data prior to preprocessing is fundamental, as substandard data are known to increase variability spuriously. Currently, no automated or manual method reliably identifies subpar images, given pre-specified exclusion criteria. In this work, we propose a protocol describing how to carry out the visual assessment of T1-weighted, T2-weighted, functional, and diffusion MRI scans of the human brain with the visual reports generated by . The protocol describes how to execute the software on all the images of the input dataset using typical research settings (i.e., a high-performance computing cluster). We then describe how to screen the visual reports generated with to identify artifacts and potential quality issues and annotate the latter with the "rating widget" ─ a utility that enables rapid annotation and minimizes bookkeeping errors. Integrating proper quality control checks on the unprocessed data is fundamental to producing reliable statistical results and crucial to identifying faults in the scanning settings, preempting the acquisition of large datasets with persistent artifacts that should have been addressed as they emerged.
在预处理之前对MRI数据进行质量控制至关重要,因为已知不合格数据会虚假地增加变异性。目前,给定预先指定的排除标准,没有自动或手动方法能够可靠地识别不合格图像。在这项工作中,我们提出了一个协议,描述如何对人脑的T1加权、T2加权、功能和扩散MRI扫描进行视觉评估,并生成视觉报告。该协议描述了如何使用典型的研究设置(即高性能计算集群)在输入数据集的所有图像上运行该软件。然后,我们描述了如何筛选使用该软件生成的视觉报告,以识别伪影和潜在的质量问题,并用“评级小部件”对后者进行注释 ── 这是一种能够实现快速注释并最大限度减少簿记错误的实用工具。对未处理数据进行适当的质量控制检查对于产生可靠的统计结果至关重要,对于识别扫描设置中的故障也至关重要,能够避免采集到带有本应在出现时就加以解决的持续性伪影的大型数据集。