Suppr超能文献

定量脑电图指标在昏迷性心脏骤停患者的结局组之间存在差异,并在最初 72 小时内发生变化。

Quantitative EEG Metrics Differ Between Outcome Groups and Change Over the First 72 h in Comatose Cardiac Arrest Patients.

机构信息

Portland State University, Portland, OR, USA.

Department of Neurology and Neurological Sciences, Stanford University, 300 Pasteur Drive, MC 5778, Stanford, CA, 94305, USA.

出版信息

Neurocrit Care. 2018 Feb;28(1):51-59. doi: 10.1007/s12028-017-0419-2.

Abstract

BACKGROUND

Forty to sixty-six percent of patients resuscitated from cardiac arrest remain comatose, and historic outcome predictors are unreliable. Quantitative spectral analysis of continuous electroencephalography (cEEG) may differ between patients with good and poor outcomes.

METHODS

Consecutive patients with post-cardiac arrest hypoxic-ischemic coma undergoing cEEG were enrolled. Spectral analysis was conducted on artifact-free contiguous 5-min cEEG epochs from each hour. Whole band (1-30 Hz), delta (δ, 1-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), beta (β, 13-30 Hz), α/δ power ratio, percent suppression, and variability were calculated and correlated with outcome. Graphical patterns of quantitative EEG (qEEG) were described and categorized as correlating with outcome. Clinical outcome was dichotomized, with good neurologic outcome being consciousness recovery.

RESULTS

Ten subjects with a mean age = 50 yrs (range = 18-65) were analyzed. There were significant differences in total power (3.50 [3.30-4.06] vs. 0.68 [0.52-1.02], p = 0.01), alpha power (1.39 [0.66-1.79] vs 0.27 [0.17-0.48], p < 0.05), delta power (2.78 [2.21-3.01] vs 0.55 [0.38-0.83], p = 0.01), percent suppression (0.66 [0.02-2.42] vs 73.4 [48.0-97.5], p = 0.01), and multiple measures of variability between good and poor outcome patients (all values median [IQR], good vs. poor). qEEG patterns with high or increasing power or large power variability were associated with good outcome (n = 6). Patterns with consistently low or decreasing power or minimal power variability were associated with poor outcome (n = 4).

CONCLUSIONS

These preliminary results suggest qEEG metrics correlate with outcome. In some patients, qEEG patterns change over the first three days post-arrest.

摘要

背景

在心肺复苏后,有 40%至 66%的昏迷患者仍然处于昏迷状态,而历史上的预后预测指标并不可靠。连续脑电监测(cEEG)的定量频谱分析可能在预后良好和预后不良的患者之间存在差异。

方法

连续纳入行 cEEG 的心肺复苏后缺氧缺血性昏迷患者。对每个小时的无伪迹连续 5 分钟 cEEG 时段进行频谱分析。计算全频段(1-30 Hz)、δ 频段(1-4 Hz)、θ 频段(4-8 Hz)、α 频段(8-13 Hz)、β 频段(13-30 Hz)、α/δ 功率比、抑制百分比和变异性,并与预后相关。描述并分类定量脑电图(qEEG)的图形模式,与预后相关。临床预后分为二分类,以意识恢复为良好神经预后。

结果

分析了 10 名平均年龄为 50 岁(范围为 18-65 岁)的受试者。总功率(3.50 [3.30-4.06] vs. 0.68 [0.52-1.02],p = 0.01)、α 功率(1.39 [0.66-1.79] vs 0.27 [0.17-0.48],p < 0.05)、δ 功率(2.78 [2.21-3.01] vs 0.55 [0.38-0.83],p = 0.01)、抑制百分比(0.66 [0.02-2.42] vs 73.4 [48.0-97.5],p = 0.01)和预后良好与预后不良患者之间的多种变异性指标(所有值中位数[IQR],良好 vs. 不良)存在显著差异。高或增加功率或大功率变异性的 qEEG 模式与良好预后相关(n = 6)。持续低或降低功率或最小功率变异性的 qEEG 模式与不良预后相关(n = 4)。

结论

这些初步结果表明 qEEG 指标与预后相关。在一些患者中,qEEG 模式在复苏后 3 天内发生变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验