Suppr超能文献

电描记图预测难治性癫痫持续状态中麻醉剂成功撤药的指标。

Electrographic predictors of successful weaning from anaesthetics in refractory status epilepticus.

机构信息

Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

出版信息

Brain. 2020 Apr 1;143(4):1143-1157. doi: 10.1093/brain/awaa069.

Abstract

Intravenous third-line anaesthetic agents are typically titrated in refractory status epilepticus to achieve either seizure suppression or burst suppression on continuous EEG. However, the optimum treatment paradigm is unknown and little data exist to guide the withdrawal of anaesthetics in refractory status epilepticus. Premature withdrawal of anaesthetics risks the recurrence of seizures, whereas the prolonged use of anaesthetics increases the risk of treatment-associated adverse effects. This study sought to measure the accuracy of features of EEG activity during anaesthetic weaning in refractory status epilepticus as predictors of successful weaning from intravenous anaesthetics. We prespecified a successful anaesthetic wean as the discontinuation of intravenous anaesthesia without developing recurrent status epilepticus, and a wean failure as either recurrent status epilepticus or the resumption of anaesthesia for the purpose of treating an EEG pattern concerning for incipient status epilepticus. We evaluated two types of features as predictors of successful weaning: spectral components of the EEG signal, and spatial-correlation-based measures of functional connectivity. The results of these analyses were used to train a classifier to predict wean outcome. Forty-seven consecutive anaesthetic weans (23 successes, 24 failures) were identified from a single-centre cohort of patients admitted with refractory status epilepticus from 2016 to 2019. Spectral components of the EEG revealed no significant differences between successful and unsuccessful weans. Analysis of functional connectivity measures revealed that successful anaesthetic weans were characterized by the emergence of larger, more densely connected, and more highly clustered spatial functional networks, yielding 75.5% (95% confidence interval: 73.1-77.8%) testing accuracy in a bootstrap analysis using a hold-out sample of 20% of data for testing and 74.6% (95% confidence interval 73.2-75.9%) testing accuracy in a secondary external validation cohort, with an area under the curve of 83.3%. Distinct signatures in the spatial networks of functional connectivity emerge during successful anaesthetic liberation in status epilepticus; these findings are absent in patients with anaesthetic wean failure. Identifying features that emerge during successful anaesthetic weaning may allow faster and more successful anaesthetic liberation after refractory status epilepticus.

摘要

静脉内三线麻醉剂通常在难治性癫痫持续状态下进行滴定,以在连续脑电图上实现癫痫发作抑制或爆发抑制。然而,最佳的治疗方案尚不清楚,并且几乎没有数据可以指导难治性癫痫持续状态下麻醉剂的停药。过早停止麻醉剂会增加癫痫发作的风险,而长期使用麻醉剂会增加与治疗相关的不良反应的风险。本研究旨在测量难治性癫痫持续状态下麻醉剂逐渐减少期间脑电图活动的特征作为成功停止静脉内麻醉剂的预测指标。我们将成功的麻醉剂逐渐减少定义为停止静脉内麻醉剂而不发生复发性癫痫持续状态,而逐渐减少失败定义为复发性癫痫持续状态或重新开始麻醉以治疗对即将发生的癫痫持续状态有疑问的脑电图模式。我们评估了两种类型的特征作为成功逐渐减少的预测指标:脑电图信号的光谱成分和功能连接的基于空间相关性的度量。这些分析的结果用于训练分类器以预测逐渐减少的结果。从 2016 年至 2019 年,从一家单中心患者队列中确定了 47 例连续的麻醉剂逐渐减少(23 例成功,24 例失败),这些患者因难治性癫痫持续状态入院。脑电图的光谱成分在成功和不成功的逐渐减少之间没有显示出显著差异。功能连接测量的分析表明,成功的麻醉剂逐渐减少的特征是出现更大、更密集连接和更高聚类的空间功能网络,在使用 20%的数据进行测试的 Bootstrap 分析中,测试准确性为 75.5%(95%置信区间:73.1-77.8%),在外部验证队列中,测试准确性为 74.6%(95%置信区间 73.2-75.9%),曲线下面积为 83.3%。在癫痫持续状态下成功的麻醉剂解放过程中,功能连接的空间网络中会出现明显的特征;在麻醉剂逐渐减少失败的患者中则不存在这些特征。识别在成功的麻醉剂逐渐减少期间出现的特征可能允许在难治性癫痫持续状态后更快、更成功地进行麻醉剂逐渐减少。

相似文献

7
New-onset super refractory status epilepticus: A case-series.新起的超难治性癫痫持续状态:病例系列。
Seizure. 2020 Feb;75:174-184. doi: 10.1016/j.seizure.2019.10.005. Epub 2019 Nov 9.
9
Depth of EEG suppression and outcome in barbiturate anesthetic treatment for refractory status epilepticus.
Epilepsia. 1999 Jun;40(6):759-62. doi: 10.1111/j.1528-1157.1999.tb00775.x.

引用本文的文献

3
Status epilepticus in the ICU.重症监护病房中的癫痫持续状态。
Intensive Care Med. 2024 Jan;50(1):1-16. doi: 10.1007/s00134-023-07263-w. Epub 2023 Dec 20.
8
To Wean or Not to Wean: Machine Learning to the Rescue.撤机还是不撤机:机器学习来帮忙。
Epilepsy Curr. 2020 Aug 25;20(5):271-273. doi: 10.1177/1535759720949257. eCollection 2020 Sep-Oct.

本文引用的文献

7
Updates in Refractory Status Epilepticus.难治性癫痫持续状态的进展
Crit Care Res Pract. 2018 May 8;2018:9768949. doi: 10.1155/2018/9768949. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验