Heiske Margit, Letellier Thierry, Klipp Edda
Laboratoire d'Anthropologie Moléculaire et Imaginérie de Synthèse, Médecine Evolutive, UMR 5288 CNRS, Faculté de Médecine, Université de Toulouse, France.
Theoretische Biophysik, Institut für Biologie, Humboldt-Universität zu Berlin, Germany.
FEBS J. 2017 Sep;284(17):2802-2828. doi: 10.1111/febs.14151. Epub 2017 Jul 25.
We developed a mathematical model of oxidative phosphorylation (OXPHOS) that allows for a precise description of mitochondrial function with respect to the respiratory flux and the ATP production. The model reproduced flux-force relationships under various experimental conditions (state 3 and 4, uncoupling, and shortage of respiratory substrate) as well as time courses, exhibiting correct P/O ratios. The model was able to reproduce experimental threshold curves for perturbations of the respiratory chain complexes, the F F -ATP synthase, the ADP/ATP carrier, the phosphate/OH carrier, and the proton leak. Thus, the model is well suited to study complex interactions within the OXPHOS system, especially with respect to physiological adaptations or pathological modifications, influencing substrate and product affinities or maximal catalytic rates. Moreover, it could be a useful tool to study the role of OXPHOS and its capacity to compensate or enhance physiopathologies of the mitochondrial and cellular energy metabolism.
我们开发了一种氧化磷酸化(OXPHOS)数学模型,该模型能够精确描述线粒体在呼吸通量和ATP产生方面的功能。该模型再现了各种实验条件下(状态3和4、解偶联以及呼吸底物短缺)的通量-力关系以及时间进程,显示出正确的P/O比。该模型能够再现呼吸链复合物、F₀F₁-ATP合酶、ADP/ATP载体、磷酸/OH载体和质子泄漏扰动的实验阈值曲线。因此,该模型非常适合研究OXPHOS系统内的复杂相互作用,特别是关于影响底物和产物亲和力或最大催化速率的生理适应或病理改变。此外,它可能是研究OXPHOS的作用及其补偿或增强线粒体和细胞能量代谢生理病理学能力的有用工具。