Suppr超能文献

CRISPR 相关核酸酶的构象调控。

Conformational regulation of CRISPR-associated nucleases.

机构信息

Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, United States.

Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, United States.

出版信息

Curr Opin Microbiol. 2017 Jun;37:110-119. doi: 10.1016/j.mib.2017.05.010. Epub 2017 Jun 21.

Abstract

Adaptive immune systems in bacteria and archaea rely on small CRISPR-derived RNAs (crRNAs) to guide specialized nucleases to foreign nucleic acids. The activation of these nucleases is controlled by a series of molecular checkpoints that ensure precise cleavage of nucleic acid targets, while minimizing toxic off-target cleavage events. In this review, we highlight recent advances in understanding regulatory mechanisms responsible for controlling the activation of these nucleases and identify emerging regulatory themes conserved across diverse CRISPR systems.

摘要

细菌和古菌中的适应性免疫系统依赖于小型 CRISPR 衍生的 RNA(crRNA)来引导专门的核酸酶靶向外来核酸。这些核酸酶的激活受到一系列分子检测点的控制,以确保核酸靶标精确切割,同时最大限度减少毒性非靶标切割事件。在这篇综述中,我们强调了最近在理解控制这些核酸酶激活的调节机制方面的进展,并确定了在不同的 CRISPR 系统中保守的新兴调节主题。

相似文献

1
Conformational regulation of CRISPR-associated nucleases.
Curr Opin Microbiol. 2017 Jun;37:110-119. doi: 10.1016/j.mib.2017.05.010. Epub 2017 Jun 21.
2
Regulation of CRISPR-Cas adaptive immune systems.
Curr Opin Microbiol. 2017 Jun;37:1-7. doi: 10.1016/j.mib.2017.02.004. Epub 2017 Mar 27.
3
[CRISPR-Cas systems as weapons against pathogenic bacteria].
Biol Aujourdhui. 2017;211(4):265-270. doi: 10.1051/jbio/2018004. Epub 2018 Jun 29.
4
CRISPR-based adaptive immune systems.
Curr Opin Microbiol. 2011 Jun;14(3):321-7. doi: 10.1016/j.mib.2011.03.005. Epub 2011 Apr 29.
5
DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes.
FEMS Microbiol Rev. 2015 May;39(3):442-63. doi: 10.1093/femsre/fuv019. Epub 2015 Apr 30.
6
Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
Nat Microbiol. 2016 Jun 6;1(8):16081. doi: 10.1038/nmicrobiol.2016.81.
7
How bacteria control the CRISPR-Cas arsenal.
Curr Opin Microbiol. 2018 Apr;42:87-95. doi: 10.1016/j.mib.2017.11.005. Epub 2017 Nov 21.
8
Molecular mechanisms of CRISPR-Cas spacer acquisition.
Nat Rev Microbiol. 2019 Jan;17(1):7-12. doi: 10.1038/s41579-018-0071-7.
9
GUIDEseq: a bioconductor package to analyze GUIDE-Seq datasets for CRISPR-Cas nucleases.
BMC Genomics. 2017 May 15;18(1):379. doi: 10.1186/s12864-017-3746-y.
10
CRISPR-Cas systems and RNA-guided interference.
Wiley Interdiscip Rev RNA. 2013 May-Jun;4(3):267-78. doi: 10.1002/wrna.1159. Epub 2013 Mar 20.

引用本文的文献

2
Function of the RNA-targeting class 2 type VI CRISPR Cas system of .
Front Microbiol. 2024 Apr 29;15:1384543. doi: 10.3389/fmicb.2024.1384543. eCollection 2024.
3
Structures, mechanisms and applications of RNA-centric CRISPR-Cas13.
Nat Chem Biol. 2024 Jun;20(6):673-688. doi: 10.1038/s41589-024-01593-6. Epub 2024 May 3.
6
Disarming of type I-F CRISPR-Cas surveillance complex by anti-CRISPR proteins AcrIF6 and AcrIF9.
Sci Rep. 2022 Sep 15;12(1):15548. doi: 10.1038/s41598-022-19797-y.
7
Selective TnsC recruitment enhances the fidelity of RNA-guided transposition.
Nature. 2022 Sep;609(7926):384-393. doi: 10.1038/s41586-022-05059-4. Epub 2022 Aug 24.
8
Large scale screening of CRISPR guide RNAs using an optimized high throughput robotics system.
Sci Rep. 2022 Aug 17;12(1):13953. doi: 10.1038/s41598-022-17474-8.
9
Type III-A CRISPR systems as a versatile gene knockdown technology.
RNA. 2022 Aug;28(8):1074-1088. doi: 10.1261/rna.079206.122. Epub 2022 May 26.
10
Unique properties of spacer acquisition by the type III-A CRISPR-Cas system.
Nucleic Acids Res. 2022 Feb 22;50(3):1562-1582. doi: 10.1093/nar/gkab1193.

本文引用的文献

1
Cas1 and the Csy complex are opposing regulators of Cas2/3 nuclease activity.
Proc Natl Acad Sci U S A. 2017 Jun 27;114(26):E5113-E5121. doi: 10.1073/pnas.1616395114. Epub 2017 Apr 24.
2
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
3
Nucleic acid detection with CRISPR-Cas13a/C2c2.
Science. 2017 Apr 28;356(6336):438-442. doi: 10.1126/science.aam9321. Epub 2017 Apr 13.
5
RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.
PLoS One. 2017 Jan 23;12(1):e0170552. doi: 10.1371/journal.pone.0170552. eCollection 2017.
6
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
7
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
8
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
9
A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction.
Nucleic Acids Res. 2017 Feb 28;45(4):1983-1993. doi: 10.1093/nar/gkw1274.
10
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.
Cell. 2016 Dec 15;167(7):1814-1828.e12. doi: 10.1016/j.cell.2016.11.053.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验