Suppr超能文献

利用门限线性模型进行奶牛死亡率和产奶量的基因组分析。

Genomic analysis of cow mortality and milk production using a threshold-linear model.

机构信息

Animal and Dairy Science Department, University of Georgia, Athens 30602.

Animal and Dairy Science Department, University of Georgia, Athens 30602.

出版信息

J Dairy Sci. 2017 Sep;100(9):7295-7305. doi: 10.3168/jds.2017-12665. Epub 2017 Jun 21.

Abstract

The objective of this study was to investigate the feasibility of genomic evaluation for cow mortality and milk production using a single-step methodology. Genomic relationships between cow mortality and milk production were also analyzed. Data included 883,887 (866,700) first-parity, 733,904 (711,211) second-parity, and 516,256 (492,026) third-parity records on cow mortality (305-d milk yields) of Holsteins from Northeast states in the United States. The pedigree consisted of up to 1,690,481 animals including 34,481 bulls genotyped with 36,951 SNP markers. Analyses were conducted with a bivariate threshold-linear model for each parity separately. Genomic information was incorporated as a genomic relationship matrix in the single-step BLUP. Traditional and genomic estimated breeding values (GEBV) were obtained with Gibbs sampling using fixed variances, whereas reliabilities were calculated from variances of GEBV samples. Genomic EBV were then converted into single nucleotide polymorphism (SNP) marker effects. Those SNP effects were categorized according to values corresponding to 1 to 4 standard deviations. Moving averages and variances of SNP effects were calculated for windows of 30 adjacent SNP, and Manhattan plots were created for SNP variances with the same window size. Using Gibbs sampling, the reliability for genotyped bulls for cow mortality was 28 to 30% in EBV and 70 to 72% in GEBV. The reliability for genotyped bulls for 305-d milk yields was 53 to 65% to 81 to 85% in GEBV. Correlations of SNP effects between mortality and 305-d milk yields within categories were the highest with the largest SNP effects and reached >0.7 at 4 standard deviations. All SNP regions explained less than 0.6% of the genetic variance for both traits, except regions close to the DGAT1 gene, which explained up to 2.5% for cow mortality and 4% for 305-d milk yields. Reliability for GEBV with a moderate number of genotyped animals can be calculated by Gibbs samples. Genomic information can greatly increase the reliability of predictions not only for milk but also for mortality. The existence of a common region on Bos taurus autosome 14 affecting both traits may indicate a major gene with a pleiotropic effect on milk and mortality.

摘要

本研究旨在利用一步法策略探讨奶牛死亡率和产奶量的基因组评估的可行性,并分析奶牛死亡率和产奶量的基因组关系。数据包含来自美国东北部各州的荷斯坦牛的 883887 (866700)胎次、733904 (711211)胎次和 516256 (492026)胎次的奶牛死亡率(305 天产奶量)记录,系谱记录包括最多 1690481 头动物,其中 34481 头公牛通过 36951 个 SNP 标记进行了基因分型。采用二元阈值线性模型对每个胎次分别进行分析。在单步 BLUP 中,将基因组信息作为基因组关系矩阵纳入。使用固定方差,通过 Gibbs 抽样获得传统和基因组估计育种值(GEBV),而可靠性则根据 GEBV 样本的方差计算。然后,将基因组 EBV 转换为单核苷酸多态性(SNP)标记效应。根据对应于 1 到 4 个标准差的值对这些 SNP 效应进行分类。为了 30 个相邻 SNP 的窗口,计算 SNP 效应的移动平均值和方差,并为具有相同窗口大小的 SNP 方差创建曼哈顿图。使用 Gibbs 抽样,对于奶牛死亡率,基因分型公牛的 EBV 的可靠性为 28%至 30%,GEBV 的可靠性为 70%至 72%。对于 305 天产奶量,基因分型公牛的 GEBV 的可靠性为 53%至 65%,而 GEBV 的可靠性为 81%至 85%。在各个类别中,死亡率和 305 天产奶量之间的 SNP 效应的相关性最高,最大 SNP 效应达到>0.7,达到 4 个标准差。除了接近 DGAT1 基因的区域,这两个区域解释了这两个性状的遗传变异不到 0.6%,解释了奶牛死亡率的高达 2.5%和 305 天产奶量的 4%。通过 Gibbs 抽样,可以计算出具有中等数量基因分型动物的 GEBV 的可靠性。基因组信息不仅可以大大提高产奶量的预测可靠性,还可以提高死亡率的预测可靠性。在影响这两个性状的牛 Taurus 染色体 14 上存在一个共同区域,这可能表明存在一个对产奶量和死亡率具有多效性的主基因。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验