Suppr超能文献

CASPER:基于计算机辅助的不可感知运动分割——基于学习的超声中不可见针的跟踪。

CASPER: computer-aided segmentation of imperceptible motion-a learning-based tracking of an invisible needle in ultrasound.

机构信息

Electrical and Computer Engineering Department, University of British Columbia, Vancouver, BC, Canada.

Electrical and Computer Engineering Department and Mechanical Engineering Department, University of British Columbia, Vancouver, BC, Canada.

出版信息

Int J Comput Assist Radiol Surg. 2017 Nov;12(11):1857-1866. doi: 10.1007/s11548-017-1631-4. Epub 2017 Jun 24.

Abstract

PURPOSE

This paper presents a new micro-motion-based approach to track a needle in ultrasound images captured by a handheld transducer.

METHODS

We propose a novel learning-based framework to track a handheld needle by detecting microscale variations of motion dynamics over time. The current state of the art on using motion analysis for needle detection uses absolute motion and hence work well only when the transducer is static. We have introduced and evaluated novel spatiotemporal and spectral features, obtained from the phase image, in a self-supervised tracking framework to improve the detection accuracy in the subsequent frames using incremental training. Our proposed tracking method involves volumetric feature selection and differential flow analysis to incorporate the neighboring pixels and mitigate the effects of the subtle tremor motion of a handheld transducer. To evaluate the detection accuracy, the method is tested on porcine tissue in-vivo, during the needle insertion in the biceps femoris muscle.

RESULTS

Experimental results show the mean, standard deviation and root-mean-square errors of [Formula: see text], [Formula: see text] and [Formula: see text] in the insertion angle, and 0.82, 1.21, 1.47 mm, in the needle tip, respectively.

CONCLUSIONS

Compared to the appearance-based detection approaches, the proposed method is especially suitable for needles with ultrasonic characteristics that are imperceptible in the static image and to the naked eye.

摘要

目的

本文提出了一种新的基于微运动的方法,用于跟踪由手持式换能器捕获的超声图像中的针。

方法

我们提出了一种新颖的基于学习的框架,通过检测随时间变化的微尺度运动动态变化来跟踪手持式针。目前使用运动分析进行针检测的最新技术使用绝对运动,因此仅在换能器静止时效果良好。我们已经在自监督跟踪框架中引入并评估了来自相位图像的新颖的时空和光谱特征,以使用增量训练提高后续帧中的检测精度。我们提出的跟踪方法涉及体积特征选择和差分流分析,以整合相邻像素并减轻手持式换能器细微震颤运动的影响。为了评估检测精度,该方法在猪组织体内进行了测试,在肱二头肌中进行了针插入。

结果

实验结果表明,在插入角度下[Formula: see text]、[Formula: see text]和[Formula: see text]的平均值、标准差和均方根误差分别为 0.82、1.21 和 1.47mm,在针尖处。

结论

与基于外观的检测方法相比,该方法特别适用于超声特征不可见的针,肉眼也无法看到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验