Nuñez Antonio, Benavente Isabel, Blanco Dorotea, Boix Héctor, Cabañas Fernando, Chaffanel Mercedes, Fernández-Colomer Belén, Fernández-Lorenzo José Ramón, Loureiro Begoña, Moral María Teresa, Pavón Antonio, Tofé Inés, Valverde Eva, Vento Máximo
Hospital Universitario y Politécnico La Fe, Valencia, España.
Hospital Universitario Puerta del Mar, Cádiz, España.
An Pediatr (Engl Ed). 2018 Apr;88(4):228.e1-228.e9. doi: 10.1016/j.anpedi.2017.05.005. Epub 2017 Jun 23.
Birth asphyxia is one of the principal causes of early neonatal death. In survivors it may evolve to hypoxic-ischaemic encephalopathy and major long-term neurological morbidity. Prolonged and intense asphyxia will lead to energy exhaustion in tissues exclusively dependent on aerobic metabolism, such as the central nervous system. Energy deficit leads to ATP-dependent pumps blockage, with the subsequent loss of neuronal transmembrane potential. The most sensitive areas of the brain will die due to necrosis. In more resistant areas, neuronal hyper-excitability, massive entrance of ionic calcium, activation of NO-synthase, free radical generation, and alteration in mitochondrial metabolism will lead to a secondary energy failure and programmed neuronal death by means of the activation of the caspase pathways. A third phase has recently been described that includes persistent inflammation and epigenetic changes that would lead to a blockage of oligodendrocyte maturation, alteration of neurogenesis, axonal maturation, and synaptogenesis. In this scenario, oxidative stress plays a critical role causing direct damage to the central nervous system and activating metabolic cascades leading to apoptosis and inflammation. Moderate whole body hypothermia to preserve energy stores and to reduce the formation of oxygen reactive species attenuates the mechanisms that lead to the amplification of cerebral damage upon resuscitation. The combination of hypothermia with coadjuvant therapies may contribute to improve the prognosis.
出生窒息是新生儿早期死亡的主要原因之一。对于幸存者,它可能会发展为缺氧缺血性脑病和严重的长期神经功能障碍。长时间的严重窒息会导致仅依赖有氧代谢的组织(如中枢神经系统)出现能量耗竭。能量不足会导致依赖ATP的泵阻塞,继而导致神经元跨膜电位丧失。大脑中最敏感的区域会因坏死而死亡。在更具耐受性的区域,神经元过度兴奋、离子钙大量内流、一氧化氮合酶激活、自由基生成以及线粒体代谢改变会导致继发性能量衰竭,并通过激活半胱天冬酶途径导致程序性神经元死亡。最近描述了第三个阶段,包括持续的炎症和表观遗传变化,这会导致少突胶质细胞成熟受阻、神经发生改变、轴突成熟和突触形成异常。在这种情况下,氧化应激起着关键作用,它会直接损害中枢神经系统并激活导致细胞凋亡和炎症的代谢级联反应。适度的全身低温可保存能量储备并减少氧活性物质的形成,从而减轻复苏时导致脑损伤扩大的机制。低温与辅助治疗相结合可能有助于改善预后。