Suppr超能文献

经修订的世界卫生组织免疫接种后不良事件因果关系评估方案在印度的应用。

Application of the revised WHO causality assessment protocol for adverse events following immunization in India.

作者信息

Singh Awnish Kumar, Wagner Abram L, Joshi Jyoti, Carlson Bradley F, Aneja Satinder, Boulton Matthew L

机构信息

Former National AEFI Secretariat, Immunization Technical Support Unit, Public Health Foundation of India, New Delhi, India; National Technical Advisory Group on Immunization Secretariat, Ministry of Health and Family Welfare, National Institute of Health and Family Welfare, New Delhi, India.

Department of Epidemiology, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, USA.

出版信息

Vaccine. 2017 Jul 24;35(33):4197-4202. doi: 10.1016/j.vaccine.2017.06.027. Epub 2017 Jun 22.

Abstract

BACKGROUND

In 2013, the World Health Organization (WHO) and CIOMS introduced a revised Causality Assessment Protocol (CAP) for Adverse Events following Immunization (AEFI). India is one of the first countries to adopt the revised CAP. This study describes the application of the revised CAP in India.

METHODS

We describe use of CAP by India's AEFI surveillance program to assess reported AEFIs. Using publicly available results of causality assessment for reported AEFIs, we describe the results by demographic characteristics and review the trends for the results of the causality assessment.

RESULTS

A total of 771 reports of AEFI between January 2012 and January 2015, completed causality review by August 2016. The cases were reported as belonging to a cluster (54%; n=302), hospitalized or requiring hospitalization (41%; n=270), death (25%; n=195), or resulting in disability (0.4%; n=3). The most common combinations of vaccines leading to report of an AEFI were DTwP, Hepatitis B, and OPV (14%; n=106), followed by Pentavalent and OPV (13%; n=103), and JE vaccine (13%; n=101). Using the WHO Algorithm, most AEFI reports (89%, n=683) were classifiable. Classifiable AEFI reports included those with a consistent causal association (53%; n=407), an inconsistent causal association (29%; n=226) or were indeterminate causal association with implicated vaccine(s) or vaccination process (6.5%; n=50) (Fig. 1); 88 reports remained unclassifiable.

CONCLUSIONS

The revised CAP was informative and useful in classifying most of the reviewed AEFIs in India. Unclassifiable reports could be minimized with more complete information from health records. Improvements in causality assessment, and standardization in reporting between countries, can improve public confidence in vaccine system performance and identify important vaccine safety signals.

摘要

背景

2013年,世界卫生组织(WHO)和国际医学科学组织委员会(CIOMS)推出了修订后的免疫接种后不良事件因果关系评估协议(CAP)。印度是最早采用修订后CAP的国家之一。本研究描述了修订后CAP在印度的应用情况。

方法

我们描述了印度AEFI监测项目使用CAP来评估报告的AEFI。利用报告的AEFI因果关系评估的公开结果,我们按人口统计学特征描述结果,并回顾因果关系评估结果的趋势。

结果

2012年1月至2015年1月期间共有771例AEFI报告,截至2016年8月完成了因果关系审查。报告的病例被归类为聚集性(54%;n = 302)、住院或需要住院(41%;n = 270)、死亡(25%;n = 195)或导致残疾(0.4%;n = 3)。导致报告AEFI的最常见疫苗组合是百白破疫苗、乙肝疫苗和口服脊髓灰质炎疫苗(14%;n = 106),其次是五价疫苗和口服脊髓灰质炎疫苗(13%;n = 103),以及乙脑疫苗(13%;n = 101)。使用WHO算法,大多数AEFI报告(89%,n = 683)可分类。可分类的AEFI报告包括因果关系一致的(53%;n = 407)、因果关系不一致的(29%;n = 226)或与相关疫苗或接种过程因果关系不确定的(6.5%;n = 50)(图1);88份报告仍无法分类。

结论

修订后的CAP有助于对印度大多数经审查的AEFI进行分类。通过健康记录提供更完整的信息,可将无法分类的报告降至最低。因果关系评估的改进以及各国报告的标准化,可提高公众对疫苗系统性能的信心,并识别重要的疫苗安全信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验