Li Hongchun, Sharma Nanaocha, General Ignacio J, Schreiber Gideon, Bahar Ivet
Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
J Mol Biol. 2017 Aug 4;429(16):2571-2589. doi: 10.1016/j.jmb.2017.06.011. Epub 2017 Jun 23.
How structural dynamics affects cytokine signaling is under debate. Here, we investigated the dynamics of the type I interferon (IFN) receptor, IFNAR1, and its effect on signaling upon binding IFN and IFNAR2 using a combination of structure-based mechanistic studies, in situ binding, and gene induction assays. Our study reveals that IFNAR1 flexibility modulates ligand-binding affinity, which, in turn, regulates biological signaling. We identified the hinge sites and key interactions implicated in IFNAR1 inter-subdomain (SD1-SD4) movements. We showed that the predicted cooperative movements are essential to accommodate intermolecular interactions. Engineered disulfide bridges, computationally predicted to interfere with IFNAR1 dynamics, were experimentally confirmed. Notably, introducing disulfide bonds between subdomains SD2 and SD3 modulated IFN binding and activity in accordance with the relative attenuation of cooperative movements with varying distance from the hinge center, whereas locking the SD3-SD4 interface flexibility in favor of an extended conformer increased activity.
结构动力学如何影响细胞因子信号传导仍存在争议。在此,我们结合基于结构的机制研究、原位结合和基因诱导分析,研究了I型干扰素(IFN)受体IFNAR1的动力学及其在结合IFN和IFNAR2时对信号传导的影响。我们的研究表明,IFNAR1的灵活性调节配体结合亲和力,进而调节生物信号传导。我们确定了与IFNAR1亚结构域间(SD1-SD4)运动相关的铰链位点和关键相互作用。我们表明,预测的协同运动对于适应分子间相互作用至关重要。经实验证实了经计算预测会干扰IFNAR1动力学的工程二硫键。值得注意的是,在亚结构域SD2和SD3之间引入二硫键,根据与铰链中心不同距离处协同运动相对减弱的情况,调节了IFN结合和活性,而锁定SD3-SD4界面的灵活性以利于延伸构象则增加了活性。