Suppr超能文献

健康口腔中牙齿、舌头和唾液微生物群的人际多样性和时间动态变化。

Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity.

作者信息

Hall Michael W, Singh Natasha, Ng Kester F, Lam David K, Goldberg Michael B, Tenenbaum Howard C, Neufeld Josh D, G Beiko Robert, Senadheera Dilani B

机构信息

Faculty of Computer Science, Dalhousie University, Halifax, NS Canada.

Faculty of Dentistry, University of Toronto, Toronto, ON Canada.

出版信息

NPJ Biofilms Microbiomes. 2017 Jan 26;3:2. doi: 10.1038/s41522-016-0011-0. eCollection 2017.

Abstract

Oral microbes form a complex and dynamic biofilm community, which is subjected to daily host and environmental challenges. Dysbiosis of the oral biofilm is correlated with local and distal infections and postulating a baseline for the healthy core oral microbiota provides an opportunity to examine such shifts during the onset and recurrence of disease. Here we quantified the daily, weekly, and monthly variability of the oral microbiome by sequencing the largest oral microbiota time-series to date, covering multiple oral sites in ten healthy individuals. Temporal dynamics of salivary, dental, and tongue consortia were examined by high-throughput 16S rRNA gene sequencing over 90 days, with four individuals sampled additionally 1 year later. Distinct communities were observed between dental, tongue, and salivary samples, with high levels of similarity observed between the tongue and salivary communities. Twenty-six core OTUs that classified within , and genera were present in ≥95% samples and accounted for ~65% of the total sequence data. Phylogenetic diversity varied from person to person, but remained relatively stable within individuals over time compared to inter-individual variation. In contrast, the composition of rare microorganisms was highly variable over time, within most individuals. Using machine learning, an individual's oral microbial assemblage could be correctly assigned to them with 88-97% accuracy, depending on the sample site; 83% of samples taken a year after initial sampling could be confidently traced back to the source subject.

摘要

口腔微生物形成一个复杂且动态的生物膜群落,该群落每天都会受到宿主和环境的挑战。口腔生物膜的生态失调与局部和远处感染相关,而设定健康核心口腔微生物群的基线为研究疾病发生和复发期间的这种变化提供了契机。在此,我们通过对迄今为止最大规模的口腔微生物群时间序列进行测序,量化了口腔微生物组的每日、每周和每月变异性,该时间序列涵盖了10名健康个体的多个口腔部位。通过高通量16S rRNA基因测序,在90天内检测了唾液、牙齿和舌部菌群的时间动态,其中4名个体在1年后额外进行了采样。在牙齿、舌部和唾液样本之间观察到不同的群落,舌部和唾液群落之间具有高度相似性。在≥95%的样本中存在26个核心OTU,它们归类于 、 和 属,占总序列数据的约65%。系统发育多样性因人而异,但与个体间变异相比,个体内部随时间相对稳定。相比之下,在大多数个体中,稀有微生物的组成随时间高度可变。使用机器学习,根据样本部位的不同,个体的口腔微生物组合能够以88 - 97%的准确率被正确地归属于他们;在初次采样一年后采集的样本中,83%能够被可靠地追溯到原始个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0e1/5445578/9b43845c9bd4/41522_2016_11_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验