Suppr超能文献

检测自闭症谱系障碍儿童的异常言语发声:基于机器学习的语音分析与言语治疗师的比较

Detecting Abnormal Word Utterances in Children With Autism Spectrum Disorders: Machine-Learning-Based Voice Analysis Versus Speech Therapists.

作者信息

Nakai Yasushi, Takiguchi Tetsuya, Matsui Gakuyo, Yamaoka Noriko, Takada Satoshi

机构信息

1 University of Miyazaki, Miyazaki, Japan.

2 Kobe University, Kobe, Japan.

出版信息

Percept Mot Skills. 2017 Oct;124(5):961-973. doi: 10.1177/0031512517716855. Epub 2017 Jun 26.

Abstract

Abnormal prosody is often evident in the voice intonations of individuals with autism spectrum disorders. We compared a machine-learning-based voice analysis with human hearing judgments made by 10 speech therapists for classifying children with autism spectrum disorders ( n = 30) and typical development ( n = 51). Using stimuli limited to single-word utterances, machine-learning-based voice analysis was superior to speech therapist judgments. There was a significantly higher true-positive than false-negative rate for machine-learning-based voice analysis but not for speech therapists. Results are discussed in terms of some artificiality of clinician judgments based on single-word utterances, and the objectivity machine-learning-based voice analysis adds to judging abnormal prosody.

摘要

异常韵律在自闭症谱系障碍个体的语音语调中往往很明显。我们将基于机器学习的语音分析与10名言语治疗师对自闭症谱系障碍儿童(n = 30)和发育正常儿童(n = 51)的人工听觉判断进行了比较。使用仅限于单个单词发音的刺激,基于机器学习的语音分析优于言语治疗师的判断。基于机器学习的语音分析的真阳性率显著高于假阴性率,而言语治疗师的判断则不然。我们从基于单个单词发音的临床判断的一些人为因素,以及基于机器学习的语音分析在判断异常韵律时所增加的客观性方面对结果进行了讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验