Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA.
Department of Anatomy, College of Medicine, Korea University, Seoul, Republic of Korea.
Nat Biotechnol. 2017 Sep;35(9):858-863. doi: 10.1038/nbt.3902. Epub 2017 Jun 26.
Despite recent advances in optogenetics, it remains challenging to manipulate gene expression in specific populations of neurons. We present a dual-protein switch system, Cal-Light, that translates neuronal-activity-mediated calcium signaling into gene expression in a light-dependent manner. In cultured neurons and brain slices, we show that Cal-Light drives expression of the reporter EGFP with high spatiotemporal resolution only in the presence of both blue light and calcium. Delivery of the Cal-Light components to the motor cortex of mice by viral vectors labels a subset of excitatory and inhibitory neurons related to learned lever-pressing behavior. By using Cal-Light to drive expression of the inhibitory receptor halorhodopsin (eNpHR), which responds to yellow light, we temporarily inhibit the lever-pressing behavior, confirming that the labeled neurons mediate the behavior. Thus, Cal-Light enables dissection of neural circuits underlying complex mammalian behaviors with high spatiotemporal precision.
尽管近年来在光遗传学方面取得了进展,但仍然难以在特定神经元群体中操纵基因表达。我们提出了一种双蛋白开关系统 Cal-Light,它将神经元活动介导的钙信号转化为光依赖性的基因表达。在培养的神经元和脑片中,我们表明 Cal-Light 仅在存在蓝光和钙的情况下,以高时空分辨率驱动报告基因 EGFP 的表达。通过病毒载体将 Cal-Light 组件递送到小鼠的运动皮层,标记与学习压杆行为相关的兴奋性和抑制性神经元亚群。通过使用 Cal-Light 驱动抑制性受体 halorhodopsin(eNpHR)的表达,该受体对黄光有反应,我们暂时抑制了压杆行为,证实标记的神经元介导了该行为。因此,Cal-Light 能够以高时空精度解析复杂的哺乳动物行为背后的神经回路。