Guntas Gurkan, Hallett Ryan A, Zimmerman Seth P, Williams Tishan, Yumerefendi Hayretin, Bear James E, Kuhlman Brian
Department of Biochemistry & Biophysics.
Department of Cell Biology & Physiology, University of North Carolina Lineberger Comprehensive Cancer Center, and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):112-7. doi: 10.1073/pnas.1417910112. Epub 2014 Dec 22.
The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.
光诱导蛋白质-蛋白质相互作用的发现使得人们能够对多种生物过程进行空间和时间上的控制。为了有效发挥作用,光二聚体应具备几个特性:在光刺激下其结合亲和力应发生显著变化,不应与细胞中的其他分子发生交叉反应,并且应易于在多种生物体中使用,以便将感兴趣的蛋白质相互招募。为了创建一个符合这些标准的开关,我们将细菌SsrA肽嵌入到一种天然存在的光开关——来自燕麦的光-氧-电压2(LOV2)结构域的C端螺旋中。在黑暗中,SsrA肽在空间上被阻碍,无法结合其天然结合伴侣SspB。当用蓝光激活时,LOV2结构域的C端螺旋从蛋白质上脱离,使得SsrA肽能够结合SspB。未经优化时,该开关在光刺激下对SspB的结合亲和力有两倍的变化。在此,我们描述了利用计算蛋白质设计、噬菌体展示和高通量结合测定来创建一种改进的光诱导二聚体(iLID),其在光刺激下对SspB的亲和力变化超过50倍。iLID的晶体结构显示了LOV2结构域表面与一个经过工程改造的苯丙氨酸之间的关键相互作用,该苯丙氨酸在黑暗中能更紧密地将SsrA肽固定在LOV2结构域上。我们通过在哺乳动物细胞培养中的光介导亚细胞定位以及对小GTPase信号传导的可逆控制,证明了该开关的功能实用性。