Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA.
Nat Commun. 2022 Dec 12;13(1):7692. doi: 10.1038/s41467-022-35406-y.
Verifying causal effects of neural circuits is essential for proving a direct circuit-behavior relationship. However, techniques for tagging only active neurons with high spatiotemporal precision remain at the beginning stages. Here we develop the soma-targeted Cal-Light (ST-Cal-Light) which selectively converts somatic calcium rise triggered by action potentials into gene expression. Such modification simultaneously increases the signal-to-noise ratio of reporter gene expression and reduces the light requirement for successful labeling. Because of the enhanced efficacy, the ST-Cal-Light enables the tagging of functionally engaged neurons in various forms of behaviors, including context-dependent fear conditioning, lever-pressing choice behavior, and social interaction behaviors. We also target kainic acid-sensitive neuronal populations in the hippocampus which subsequently suppress seizure symptoms, suggesting ST-Cal-Light's applicability in controlling disease-related neurons. Furthermore, the generation of a conditional ST-Cal-Light knock-in mouse provides an opportunity to tag active neurons in a region- or cell-type specific manner via crossing with other Cre-driver lines. Thus, the versatile ST-Cal-Light system links somatic action potentials to behaviors with high temporal precision, and ultimately allows functional circuit dissection at a single cell resolution.
验证神经回路的因果效应对于证明直接的回路-行为关系至关重要。然而,具有高时空精度的仅标记活跃神经元的技术仍处于起步阶段。在这里,我们开发了靶向胞体的 Cal-Light(ST-Cal-Light),它可以选择性地将动作电位触发的胞体钙升高转化为基因表达。这种修饰同时提高了报告基因表达的信噪比,并降低了成功标记所需的光量。由于增强的功效,ST-Cal-Light 能够标记各种形式的行为中的功能活跃神经元,包括上下文相关的恐惧条件反射、按压杠杆选择行为和社交互动行为。我们还靶向海马中的 kainic acid 敏感神经元群体,随后抑制癫痫症状,表明 ST-Cal-Light 适用于控制与疾病相关的神经元。此外,条件性 ST-Cal-Light 敲入小鼠的产生提供了通过与其他 Cre 驱动线杂交以区域或细胞类型特异性方式标记活性神经元的机会。因此,多功能的 ST-Cal-Light 系统将胞体动作电位与具有高时间精度的行为联系起来,并最终允许在单细胞分辨率下进行功能回路剖析。