Kang S M, Rosales J L, Meier-Stephenson V, Kim S, Lee K Y, Narendran A
Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
Division of Pediatric Oncology, Alberta Children's Hospital and POETIC Laboratory for Preclinical and Drug Discovery Studies, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.
Oncogene. 2017 Oct 19;36(42):5910-5913. doi: 10.1038/onc.2017.211. Epub 2017 Jun 26.
L-asparaginase is a critical chemotherapeutic agent for acute lymphoblastic leukemia (ALL). It hydrolyzes plasma asparagine into aspartate and NH, causing asparagine deficit and inhibition of protein synthesis and eventually, leukemic cell death. However, patient relapse often occurs due to development of resistance. The molecular mechanism by which ALL cells acquire resistance to L-asparaginase is unknown. Therefore, we sought to identify genes that are involved in L-asparaginase resistance in primary leukemic cells. By unbiased genome-wide RNAi screening, we found that among 10 resistant ALL clones, six hits were for opioid receptor mu 1 (oprm1), two hits were for carbonic anhydrase 1 (ca1) and another two hits were for ubiquitin-conjugating enzyme E2C (ube2c). We also found that OPRM1 is expressed in all leukemic cells tested. Specific knockdown of OPRM1 confers L-asparaginase resistance, validating our genome-wide retroviral shRNA library screening data. Methadone, an agonist of OPRM1, enhances the sensitivity of parental leukemic cells, but not OPRM1-depleted cells, to L-asparaginase treatment, indicating that OPRM1 is required for the synergistic action of L-asparaginase and methadone, and that OPRM1 loss promotes leukemic cell survival likely through downregulation of the OPRM1-mediated apoptotic pathway. Consistent with this premise, patient leukemic cells with relatively high levels of OPRM1 are more sensitive to L-asparaginase treatment compared to OPRM1-depleted leukemic cells, further indicating that OPRM1 loss has a crucial role in L-asparaginase resistance in leukemic patients. Thus, our study demonstrates for the first time, a novel OPRM1-mediated mechanism for L-asparaginase resistance in ALL, and identifies OPRM1 as a functional biomarker for defining high-risk subpopulations and for the detection of evolving resistant clones. Oprm1 may also be utilized for effective treatment of L-asparaginase-resistant ALL.
L-天冬酰胺酶是治疗急性淋巴细胞白血病(ALL)的关键化疗药物。它将血浆中的天冬酰胺水解成天冬氨酸和NH,导致天冬酰胺缺乏,抑制蛋白质合成,最终使白血病细胞死亡。然而,由于耐药性的产生,患者常出现复发。ALL细胞对L-天冬酰胺酶产生耐药性的分子机制尚不清楚。因此,我们试图鉴定原发性白血病细胞中与L-天冬酰胺酶耐药性相关的基因。通过无偏倚的全基因组RNAi筛选,我们发现,在10个耐药ALL克隆中,有6个命中阿片受体μ1(oprm1),2个命中碳酸酐酶1(ca1),另外2个命中泛素结合酶E2C(ube2c)。我们还发现OPRM1在所有测试的白血病细胞中均有表达。特异性敲低OPRM1可赋予L-天冬酰胺酶耐药性,验证了我们全基因组逆转录病毒shRNA文库筛选数据。美沙酮是OPRM1的激动剂,可增强亲本白血病细胞对L-天冬酰胺酶治疗的敏感性,但对OPRM1缺失的细胞无效,这表明OPRM1是L-天冬酰胺酶和美沙酮协同作用所必需的,OPRM1缺失可能通过下调OPRM1介导的凋亡途径促进白血病细胞存活。与此前提一致,与OPRM1缺失的白血病细胞相比,OPRM1水平相对较高的患者白血病细胞对L-天冬酰胺酶治疗更敏感,进一步表明OPRM1缺失在白血病患者对L-天冬酰胺酶的耐药性中起关键作用。因此,我们的研究首次证明了ALL中一种新的OPRM1介导的L-天冬酰胺酶耐药机制,并将OPRM1鉴定为定义高危亚群和检测不断演变的耐药克隆的功能性生物标志物。Oprm1也可用于有效治疗L-天冬酰胺酶耐药的ALL。