Lee Jung Kwon, Rosales Jesusa L, Lee Ki-Young
Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer and Alberta Children's Hospital Research Institutes, University of Calgary, Calgary, AB, Canada.
Front Cell Dev Biol. 2023 Feb 21;11:1124164. doi: 10.3389/fcell.2023.1124164. eCollection 2023.
Acute lymphoblastic leukemia (aLL) is a malignant cancer in the blood and bone marrow characterized by rapid expansion of lymphoblasts. It is a common pediatric cancer and the principal basis of cancer death in children. Previously, we reported that L-asparaginase, a key component of acute lymphoblastic leukemia chemotherapy, causes IP3R-mediated ER Ca release, which contributes to a fatal rise in [Ca], eliciting aLL cell apoptosis upregulation of the Ca-regulated caspase pathway (Blood, 133, 2222-2232). However, the cellular events leading to the rise in [Ca] following L-asparaginase-induced ER Ca release remain obscure. Here, we show that in acute lymphoblastic leukemia cells, L-asparaginase causes mitochondrial permeability transition pore (mPTP) formation that is dependent on IP3R-mediated ER Ca release. This is substantiated by the lack of L-asparaginase-induced ER Ca release and loss of mitochondrial permeability transition pore formation in cells depleted of HAP1, a key component of the functional IP3R/HAP1/Htt ER Ca channel. L-asparaginase induces ER Ca transfer into mitochondria, which evokes an increase in reactive oxygen species (ROS) level. L-asparaginase-induced rise in mitochondrial Ca and reactive oxygen species production cause mitochondrial permeability transition pore formation that then leads to an increase in [Ca]. Such rise in [Ca] is inhibited by Ruthenium red (RuR), an inhibitor of the mitochondrial calcium uniporter (MCU) that is required for mitochondrial Ca uptake, and cyclosporine A (CsA), an mitochondrial permeability transition pore inhibitor. Blocking ER-mitochondria Ca transfer, mitochondrial ROS production, and/or mitochondrial permeability transition pore formation inhibit L-asparaginase-induced apoptosis. Taken together, these findings fill in the gaps in our understanding of the Ca-mediated mechanisms behind L-asparaginase-induced apoptosis in acute lymphoblastic leukemia cells.
急性淋巴细胞白血病(ALL)是一种发生于血液和骨髓的恶性肿瘤,其特征为淋巴母细胞迅速增殖。它是一种常见的儿童癌症,也是儿童癌症死亡的主要原因。此前,我们报道过,急性淋巴细胞白血病化疗的关键成分L-天冬酰胺酶会导致IP3R介导的内质网钙释放,这会导致细胞内钙离子浓度([Ca])致命性升高,引发ALL细胞凋亡,并上调钙调节的半胱天冬酶途径(《血液》,第133卷,2222 - 2232页)。然而,L-天冬酰胺酶诱导内质网钙释放后导致[Ca]升高的细胞事件仍不清楚。在此,我们表明,在急性淋巴细胞白血病细胞中,L-天冬酰胺酶会导致线粒体通透性转换孔(mPTP)形成,这依赖于IP3R介导的内质网钙释放。功能性IP3R/HAP1/Htt内质网钙通道的关键成分HAP1缺失的细胞中,L-天冬酰胺酶诱导的内质网钙释放缺失以及线粒体通透性转换孔形成缺失,证实了这一点。L-天冬酰胺酶诱导内质网钙转移至线粒体,这会引发活性氧(ROS)水平升高。L-天冬酰胺酶诱导的线粒体钙升高和活性氧产生会导致线粒体通透性转换孔形成,进而导致[Ca]升高。这种[Ca]升高受到钌红(RuR)的抑制,钌红是线粒体钙单向转运体(MCU,线粒体摄取钙所必需)的抑制剂,以及环孢素A(CsA)的抑制,环孢素A是一种线粒体通透性转换孔抑制剂。阻断内质网-线粒体钙转移、线粒体ROS产生和/或线粒体通透性转换孔形成可抑制L-天冬酰胺酶诱导的细胞凋亡。综上所述,这些发现填补了我们对L-天冬酰胺酶诱导急性淋巴细胞白血病细胞凋亡背后钙介导机制理解上的空白。