Godfrey Luke B, Gashler Michael S
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2973-2985. doi: 10.1109/TNNLS.2017.2709324. Epub 2017 Jun 22.
We present a neural network technique for the analysis and extrapolation of time-series data called neural decomposition (ND). Units with a sinusoidal activation function are used to perform a Fourier-like decomposition of training samples into a sum of sinusoids, augmented by units with nonperiodic activation functions to capture linear trends and other nonperiodic components. We show how careful weight initialization can be combined with regularization to form a simple model that generalizes well. Our method generalizes effectively on the Mackey-Glass series, a data set of unemployment rates as reported by the U.S. Department of Labor Statistics, a time-series of monthly international airline passengers, the monthly ozone concentration in downtown Los Angeles, and an unevenly sampled time series of oxygen isotope measurements from a cave in north India. We find that ND outperforms popular time-series forecasting techniques, including long short-term memory network, echo-state networks, autoregressive integrated moving average (ARIMA), seasonal ARIMA, support vector regression with a radial basis function, and Gashler and Ashmore's model.
我们提出了一种用于时间序列数据分析和外推的神经网络技术,称为神经分解(ND)。具有正弦激活函数的单元用于将训练样本进行类似傅里叶的分解,分解为正弦波之和,并通过具有非周期激活函数的单元进行增强,以捕获线性趋势和其他非周期成分。我们展示了如何将精心的权重初始化与正则化相结合,以形成一个泛化能力良好的简单模型。我们的方法在Mackey-Glass序列、美国劳工统计局报告的失业率数据集、每月国际航空乘客时间序列、洛杉矶市中心的每月臭氧浓度以及印度北部一个洞穴中氧同位素测量的不均匀采样时间序列上都能有效泛化。我们发现,ND优于流行的时间序列预测技术,包括长短期记忆网络、回声状态网络、自回归积分移动平均(ARIMA)、季节性ARIMA、具有径向基函数的支持向量回归以及Gashler和Ashmore的模型。