Suppr超能文献

基于混合模型的每日空气质量指数预测:以中国为例。

Daily air quality index forecasting with hybrid models: A case in China.

作者信息

Zhu Suling, Lian Xiuyuan, Liu Haixia, Hu Jianming, Wang Yuanyuan, Che Jinxing

机构信息

School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, China.

School of Mathematics & Statistics, Lanzhou University, Tianshuinanlu 222, Lanzhou, China.

出版信息

Environ Pollut. 2017 Dec;231(Pt 2):1232-1244. doi: 10.1016/j.envpol.2017.08.069. Epub 2017 Sep 19.

Abstract

Air quality is closely related to quality of life. Air pollution forecasting plays a vital role in air pollution warnings and controlling. However, it is difficult to attain accurate forecasts for air pollution indexes because the original data are non-stationary and chaotic. The existing forecasting methods, such as multiple linear models, autoregressive integrated moving average (ARIMA) and support vector regression (SVR), cannot fully capture the information from series of pollution indexes. Therefore, new effective techniques need to be proposed to forecast air pollution indexes. The main purpose of this research is to develop effective forecasting models for regional air quality indexes (AQI) to address the problems above and enhance forecasting accuracy. Therefore, two hybrid models (EMD-SVR-Hybrid and EMD-IMFs-Hybrid) are proposed to forecast AQI data. The main steps of the EMD-SVR-Hybrid model are as follows: the data preprocessing technique EMD (empirical mode decomposition) is utilized to sift the original AQI data to obtain one group of smoother IMFs (intrinsic mode functions) and a noise series, where the IMFs contain the important information (level, fluctuations and others) from the original AQI series. LS-SVR is applied to forecast the sum of the IMFs, and then, S-ARIMA (seasonal ARIMA) is employed to forecast the residual sequence of LS-SVR. In addition, EMD-IMFs-Hybrid first separately forecasts the IMFs via statistical models and sums the forecasting results of the IMFs as EMD-IMFs. Then, S-ARIMA is employed to forecast the residuals of EMD-IMFs. To certify the proposed hybrid model, AQI data from June 2014 to August 2015 collected from Xingtai in China are utilized as a test case to investigate the empirical research. In terms of some of the forecasting assessment measures, the AQI forecasting results of Xingtai show that the two proposed hybrid models are superior to ARIMA, SVR, GRNN, EMD-GRNN, Wavelet-GRNN and Wavelet-SVR. Therefore, the proposed hybrid models can be used as effective and simple tools for air pollution forecasting and warning as well as for management.

摘要

空气质量与生活质量密切相关。空气污染预测在空气污染预警和控制中起着至关重要的作用。然而,由于原始数据是非平稳且混沌的,因此很难获得准确的空气污染指数预测。现有的预测方法,如多元线性模型、自回归积分移动平均(ARIMA)和支持向量回归(SVR),无法充分捕捉污染指数序列中的信息。因此,需要提出新的有效技术来预测空气污染指数。本研究的主要目的是开发区域空气质量指数(AQI)的有效预测模型,以解决上述问题并提高预测准确性。因此,提出了两种混合模型(EMD-SVR-混合模型和EMD-IMF-混合模型)来预测AQI数据。EMD-SVR-混合模型的主要步骤如下:利用数据预处理技术EMD(经验模态分解)对原始AQI数据进行筛选,以获得一组更平滑的IMF(固有模态函数)和一个噪声序列,其中IMF包含来自原始AQI序列的重要信息(水平、波动等)。应用最小二乘支持向量回归(LS-SVR)来预测IMF的总和,然后,使用季节性自回归积分移动平均(S-ARIMA)来预测LS-SVR的残差序列。此外,EMD-IMF-混合模型首先通过统计模型分别预测IMF,并将IMF的预测结果相加作为EMD-IMF。然后,使用S-ARIMA来预测EMD-IMF的残差。为了验证所提出的混合模型,将从中国邢台收集的2014年6月至2015年8月的AQI数据作为测试案例进行实证研究。就一些预测评估指标而言,邢台的AQI预测结果表明,所提出的两种混合模型优于ARIMA、SVR、广义回归神经网络(GRNN)、EMD-GRNN、小波-GRNN和小波-SVR。因此,所提出的混合模型可以用作空气污染预测和预警以及管理的有效且简单的工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验