Liu Binyan, Xue Qizhen, Gu Shiling, Wang Weiping, Chen Jie, Li Yingqing, Wang Chunxue, Zhang Huidong
Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, PR China.
Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
Arch Biochem Biophys. 2016 Apr 15;596:99-107. doi: 10.1016/j.abb.2016.03.009. Epub 2016 Mar 11.
Alkylating agents can form O(6)-methylguansine (O(6)-MeG). To study the intrinsic kinetic behaviors of bypassing O(6)-MeG, we used the catalytic core of yeast DNA polymerase η (Pol ηcore, residues 1-513), instead of the full-length Pol η, to study their elementary steps, eliminating the effects of the C-terminal C2H2 motif on dNTP incorporation. The misincorporation frequencies were 10(-4) for G and 0.055-0.446 for O(6)-MeG. O(6)-MeG does not affect the extension efficiency. Pol ηcore showed no fast burst phase for any incorporation opposite G or O(6)-MeG. Primer extension was greatly blocked by O(6)-MeG and about 67% dTTP, 31% dCTP and 2% dATP were incorporated opposite O(6)-MeG. This study provides further understanding of the mutation mechanism of alkylated lesion for yeast DNA polymerase η.
烷化剂可形成O(6)-甲基鸟嘌呤(O(6)-MeG)。为了研究绕过O(6)-MeG的内在动力学行为,我们使用酵母DNA聚合酶η的催化核心(Pol ηcore,第1至513位氨基酸残基),而非全长Pol η,来研究其基本步骤,消除C末端C2H2基序对dNTP掺入的影响。G的错掺入频率为10(-4),而O(6)-MeG的错掺入频率为0.055 - 0.446。O(6)-MeG不影响延伸效率。对于与G或O(6)-MeG配对的任何掺入,Pol ηcore均未表现出快速爆发阶段。引物延伸被O(6)-MeG极大地阻断,与O(6)-MeG配对时,约67%的dTTP、31%的dCTP和2%的dATP被掺入。该研究进一步加深了对酵母DNA聚合酶η烷基化损伤突变机制的理解。