Suppr超能文献

两种肺炎克雷伯菌脂多糖A晚期酰基转移酶的鉴定、特性及其在毒力中的作用。

Identification and Characterization of Two Klebsiella pneumoniae Lipid A Late Acyltransferases and Their Role in Virulence.

作者信息

Mills Grant, Dumigan Amy, Kidd Timothy, Hobley Laura, Bengoechea José A

机构信息

Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.

School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.

出版信息

Infect Immun. 2017 Aug 18;85(9). doi: 10.1128/IAI.00068-17. Print 2017 Sep.

Abstract

causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of , which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available genomes revealed that this pathogen's genome encodes two orthologues of LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated lipid A, whereas only LpxL2 mediated lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of and expression. LpxL2-dependent lipid A acylation protects from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti- drugs.

摘要

会引发从尿路感染到肺炎等广泛的感染。脂多糖是这种病原体的一种毒力因子,尽管我们对其生物合成的理解还存在空白。在此,我们报告了对[具体基因名称]的特性描述,该基因编码负责未成熟脂质A分子后期二级酰化的一种酶。对现有[病原体名称]基因组的分析表明,该病原体的基因组编码了LpxL的两个直系同源物。通过遗传学方法和质谱分析,我们证明LpxL1催化月桂酸的添加,而LpxL2催化肉豆蔻酸的添加。两种酶都对脂质A进行酰化,而只有LpxL2介导[具体脂质A种类]脂质A的酰化。我们发现LpxL1受到双组分系统PhoPQ的负调控。[病原体名称]突变体产生的脂质A缺乏野生型合成的脂质A中发现的2-羟基肉豆蔻酸、棕榈酸和4-氨基阿拉伯糖修饰。由于LpxO修饰了LpxL2转移到脂质A上的肉豆蔻酸,所以预期缺乏2-羟基肉豆蔻酸。其他两种修饰的缺失很可能是由于[相关基因名称1]和[相关基因名称2]表达的下调所致。依赖LpxL2的脂质A酰化可保护[病原体名称]免受多粘菌素的侵害,介导对吞噬作用的抗性,限制巨噬细胞炎症反应的激活,并且是蜡螟中病原体存活所必需的。我们的研究结果表明,LpxL2对毒力的贡献依赖于LpxO介导的LpxL2转移的肉豆蔻酸的羟基化。我们的研究表明,LpxL2可能是开发抗[病原体名称]药物的候选靶点。

相似文献

2
Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumoniae.
Curr Microbiol. 2016 Nov;73(5):732-738. doi: 10.1007/s00284-016-1117-6. Epub 2016 Aug 17.
3
2-Hydroxylation of Lipid A Contributes to Virulence.
Infect Immun. 2019 Mar 25;87(4). doi: 10.1128/IAI.00066-19. Print 2019 Apr.
4
SitA contributes to the virulence of Klebsiella pneumoniae in a mouse infection model.
Microbes Infect. 2014 Feb;16(2):161-70. doi: 10.1016/j.micinf.2013.10.019. Epub 2013 Nov 7.
5
RfaH contributes to maximal colonization and full virulence of hypervirulent .
Front Cell Infect Microbiol. 2024 Sep 17;14:1454373. doi: 10.3389/fcimb.2024.1454373. eCollection 2024.
9
A antibiotic resistance mechanism that subdues host defences and promotes virulence.
EMBO Mol Med. 2017 Apr;9(4):430-447. doi: 10.15252/emmm.201607336.

引用本文的文献

1
Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review.
Microorganisms. 2024 Jun 21;12(7):1259. doi: 10.3390/microorganisms12071259.
2
Divergent LpxO enzymes perform site-specific lipid A 2-hydroxylation.
mBio. 2024 Feb 14;15(2):e0282323. doi: 10.1128/mbio.02823-23. Epub 2023 Dec 22.
3
Integrated Transcriptomic and Metabolomic Mapping Reveals the Mechanism of Action of Ceftazidime/Avibactam against Pan-Drug-Resistant .
ACS Infect Dis. 2023 Dec 8;9(12):2409-2422. doi: 10.1021/acsinfecdis.3c00264. Epub 2023 Oct 25.
4
Lipid A structural diversity among members of the genus .
Front Microbiol. 2023 May 25;14:1181034. doi: 10.3389/fmicb.2023.1181034. eCollection 2023.
5
Visualisation of Host-Pathogen Communication.
Adv Exp Med Biol. 2023;1406:19-39. doi: 10.1007/978-3-031-26462-7_2.
7
Rescuing humanity by antimicrobial peptides against colistin-resistant bacteria.
Appl Microbiol Biotechnol. 2022 Jun;106(11):3879-3893. doi: 10.1007/s00253-022-11940-z. Epub 2022 May 23.
8
Mass spectrometric analysis of lipid A obtained from the lipopolysaccharide of .
RSC Adv. 2020 Aug 20;10(51):30917-30933. doi: 10.1039/d0ra05463a. eCollection 2020 Aug 17.
9
Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections.
Bull Exp Biol Med. 2022 Mar;172(5):507-522. doi: 10.1007/s10517-022-05424-3. Epub 2022 Mar 30.

本文引用的文献

1
A antibiotic resistance mechanism that subdues host defences and promotes virulence.
EMBO Mol Med. 2017 Apr;9(4):430-447. doi: 10.15252/emmm.201607336.
2
Identification of Two Genes Encoding for the Late Acyltransferases of Lipid A in Klebsiella pneumoniae.
Curr Microbiol. 2016 Nov;73(5):732-738. doi: 10.1007/s00284-016-1117-6. Epub 2016 Aug 17.
3
Klebsiella pneumoniae: Going on the Offense with a Strong Defense.
Microbiol Mol Biol Rev. 2016 Jun 15;80(3):629-61. doi: 10.1128/MMBR.00078-15. Print 2016 Sep.
4
Increasing burden of community-acquired pneumonia leading to hospitalisation, 1998-2014.
Thorax. 2016 Jun;71(6):535-42. doi: 10.1136/thoraxjnl-2015-207688. Epub 2016 Feb 17.
5
Deciphering tissue-induced Klebsiella pneumoniae lipid A structure.
Proc Natl Acad Sci U S A. 2015 Nov 17;112(46):E6369-78. doi: 10.1073/pnas.1508820112. Epub 2015 Nov 2.
6
Functional Genomic Screen Identifies Klebsiella pneumoniae Factors Implicated in Blocking Nuclear Factor κB (NF-κB) Signaling.
J Biol Chem. 2015 Jul 3;290(27):16678-97. doi: 10.1074/jbc.M114.621292. Epub 2015 May 13.
7
Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus.
Lancet Infect Dis. 2015 Feb;15(2):225-34. doi: 10.1016/S1473-3099(14)70850-3. Epub 2014 Oct 21.
8
Modeling Klebsiella pneumoniae pathogenesis by infection of the wax moth Galleria mellonella.
Infect Immun. 2013 Oct;81(10):3552-65. doi: 10.1128/IAI.00391-13. Epub 2013 Jul 8.
9
Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis.
Nat Rev Microbiol. 2013 Jul;11(7):467-81. doi: 10.1038/nrmicro3047. Epub 2013 Jun 10.
10
Role of bacterial surface structures on the interaction of Klebsiella pneumoniae with phagocytes.
PLoS One. 2013;8(2):e56847. doi: 10.1371/journal.pone.0056847. Epub 2013 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验