Horwath James P, Lin Xiao-Min, He Hongrui, Zhang Qingteng, Dufresne Eric M, Chu Miaoqi, Sankaranarayanan Subramanian K R S, Chen Wei, Narayanan Suresh, Cherukara Mathew J
Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
Nat Commun. 2024 Jul 15;15(1):5945. doi: 10.1038/s41467-024-49381-z.
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
由于在不同长度和时间尺度上对材料进行实验探测存在困难,理解和解释功能材料的原位动力学是物理学和材料科学中的一项重大挑战。X射线光子相关光谱(XPCS)特别适合于表征广泛时间尺度上的材料动力学。然而,材料行为中的空间和时间异质性会使实验XPCS数据的解释变得困难。在这项工作中,我们开发了一种无监督深度学习(DL)框架,用于从实验数据中自动分类弛豫动力学,而无需对系统有任何先验物理知识。我们展示了如何使用这种方法来加速对大型数据集的探索,以识别感兴趣的样本,并将这种方法应用于直接关联模型系统的微观动力学和宏观性质。重要的是,这个DL框架与材料和过程无关,标志着朝着自主材料发现迈出了具体的一步。