Suppr超能文献

铸造兼容瞬态电子学的材料和加工方法。

Materials and processing approaches for foundry-compatible transient electronics.

机构信息

Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529. doi: 10.1073/pnas.1707849114. Epub 2017 Jun 26.

Abstract

Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are () collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, () release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and () planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.

摘要

基于铸造的瞬态硅电子器件制造途径有可能成为“绿色”电子器件、可生物降解植入物、硬件安全数据存储系统和不可恢复远程设备的制造基础。本文介绍了使最先进的硅互补金属氧化物半导体 (CMOS) 铸造厂能够用于高性能、水溶性电子器件的材料和加工方法。关键要素是:(i) 可生物降解电子材料(例如硅、钨、氮化硅、二氧化硅)的集合,以及与集成电路行业目前使用的制造工艺兼容的器件架构;(ii) 释放方案和转移打印方法,用于将以这种方式形成的多个超薄组件集成到可生物降解聚合物衬底上;以及 (iii) 平面化和金属化技术,以产生互连和功能齐全的系统。以这种方式创建的各种 CMOS 器件和电路元件以及对其电气特性的详细测量突出了这些能力。在水基环境中的加速溶解研究揭示了与底层瞬态行为相关的化学动力学。结果证明了使用铸造制造途径制造复杂形式的瞬态电子器件的技术可行性,其功能能力和成本结构可以支持生物医学、军事、工业和消费行业的各种应用。

相似文献

1
Materials and processing approaches for foundry-compatible transient electronics.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529. doi: 10.1073/pnas.1707849114. Epub 2017 Jun 26.
2
Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats.
Adv Mater. 2018 Mar;30(11). doi: 10.1002/adma.201704955. Epub 2018 Jan 19.
3
Advanced Materials and Devices for Bioresorbable Electronics.
Acc Chem Res. 2018 May 15;51(5):988-998. doi: 10.1021/acs.accounts.7b00548. Epub 2018 Apr 17.
4
Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11682-11687. doi: 10.1073/pnas.1605269113.
5
25th anniversary article: materials for high-performance biodegradable semiconductor devices.
Adv Mater. 2014 Apr 2;26(13):1992-2000. doi: 10.1002/adma.201304821. Epub 2014 Feb 21.
6
Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration.
Proc Natl Acad Sci U S A. 2019 Jul 30;116(31):15398-15406. doi: 10.1073/pnas.1907697116. Epub 2019 Jul 15.
7
Beyond CMOS: heterogeneous integration of III-V devices, RF MEMS and other dissimilar materials/devices with Si CMOS to create intelligent microsystems.
Philos Trans A Math Phys Eng Sci. 2014 Feb 24;372(2012):20130105. doi: 10.1098/rsta.2013.0105. Print 2014 Mar 28.
8
Silicon-based transient electronics: principles, devices and applications.
Nanotechnology. 2024 May 1;35(29). doi: 10.1088/1361-6528/ad3ce1.
9
High-Performance Carbon Nanotube-Based Transient Complementary Electronics.
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12515-12522. doi: 10.1021/acsami.1c23134. Epub 2022 Mar 1.
10

引用本文的文献

1
Biodegradable Temperature Sensors with Enhanced Sensitivity Using Bioderived Ionic Liquid with Sodium Ions.
ACS Appl Mater Interfaces. 2025 Jul 16;17(28):40845-40854. doi: 10.1021/acsami.5c04965. Epub 2025 Jul 1.
2
Supramolecular Ionic Gels for Stretchable Electronics and Future Directions.
ACS Mater Au. 2024 Nov 22;5(1):35-44. doi: 10.1021/acsmaterialsau.4c00100. eCollection 2025 Jan 8.
3
Implantable Passive Sensors for Biomedical Applications.
Sensors (Basel). 2024 Dec 28;25(1):133. doi: 10.3390/s25010133.
4
Recent Progress and Challenges of Implantable Biodegradable Biosensors.
Micromachines (Basel). 2024 Mar 30;15(4):475. doi: 10.3390/mi15040475.
5
Design and Development of Transient Sensing Devices for Healthcare Applications.
Adv Sci (Weinh). 2024 May;11(20):e2307232. doi: 10.1002/advs.202307232. Epub 2024 Mar 14.
6
Colloidal robotics.
Nat Mater. 2023 Dec;22(12):1453-1462. doi: 10.1038/s41563-023-01589-y. Epub 2023 Aug 24.
7
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
8
Micro-/Nano-Structured Biodegradable Pressure Sensors for Biomedical Applications.
Biosensors (Basel). 2022 Nov 1;12(11):952. doi: 10.3390/bios12110952.
10
Biomedical Microtechnologies Beyond Scholarly Impact.
Micromachines (Basel). 2021 Nov 29;12(12):1471. doi: 10.3390/mi12121471.

本文引用的文献

1
Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11682-11687. doi: 10.1073/pnas.1605269113.
3
Bioresorbable silicon electronic sensors for the brain.
Nature. 2016 Feb 4;530(7588):71-6. doi: 10.1038/nature16492. Epub 2016 Jan 18.
4
Transient Rechargeable Batteries Triggered by Cascade Reactions.
Nano Lett. 2015 Jul 8;15(7):4664-71. doi: 10.1021/acs.nanolett.5b01451. Epub 2015 Jun 26.
6
Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics.
ACS Appl Mater Interfaces. 2015 May 6;7(17):9297-305. doi: 10.1021/acsami.5b02526. Epub 2015 Apr 23.
7
8
Materials for programmed, functional transformation in transient electronic systems.
Adv Mater. 2015 Jan 7;27(1):47-52. doi: 10.1002/adma.201403051. Epub 2014 Oct 30.
9
Biodegradable materials for multilayer transient printed circuit boards.
Adv Mater. 2014 Nov 19;26(43):7371-7. doi: 10.1002/adma.201403164. Epub 2014 Sep 22.
10
High-performance biodegradable/transient electronics on biodegradable polymers.
Adv Mater. 2014 Jun 18;26(23):3905-11. doi: 10.1002/adma.201306050. Epub 2014 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验