Shull Gabriella, Shin Yieljae, Viventi Jonathan, Jochum Thomas, Morizio James, Seo Kyung Jin, Fang Hui
Department of Biomedical Engineering, Duke University, Durham, North Carolina.
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm) of the cortex with fine (<100 μm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 μm × 50 μm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 μV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 μW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.
脑机接口(BCIs)具有临床益处,包括部分恢复丧失的运动控制、视觉、言语和听力。现有脑机接口的一个基本限制是它们无法以精细(<100μm)分辨率覆盖大脑皮层的多个区域(>厘米)。扩展神经接口的一个挑战是输出布线和连接器尺寸,因为每个通道都必须独立引出大脑。时分复用(TDM)通过使多个通道共享同一输出线来克服这一问题,但代价是增加了噪声。这项工作利用130纳米互补金属氧化物半导体(CMOS)工艺和转移印刷技术来设计和模拟一个384通道的有源复用阵列,该阵列通过在每个电极位点(像素)添加前端滤波和放大来最小化噪声。像素尺寸为50μm×50μm,能够以30千赫兹的频率记录所有384个通道,增益为22.3分贝,均方根噪声为9.57微伏,带宽为0.1赫兹至10千赫兹,而每个通道仅消耗0.63微瓦。这项工作可广泛应用于神经接口,以创建高通道数阵列,并最终改善脑机接口。