Suppr超能文献

低功耗384通道有源复用神经接口的设计与仿真

Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.

作者信息

Shull Gabriella, Shin Yieljae, Viventi Jonathan, Jochum Thomas, Morizio James, Seo Kyung Jin, Fang Hui

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina.

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.

出版信息

IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.

Abstract

Brain computer interfaces (BCIs) provide clinical benefits including partial restoration of lost motor control, vision, speech, and hearing. A fundamental limitation of existing BCIs is their inability to span several areas (> cm) of the cortex with fine (<100 μm) resolution. One challenge of scaling neural interfaces is output wiring and connector sizes as each channel must be independently routed out of the brain. Time division multiplexing (TDM) overcomes this by enabling several channels to share the same output wire at the cost of added noise. This work leverages a 130-nm CMOS process and transfer printing to design and simulate a 384-channel actively multiplexed array, which minimizes noise by adding front end filtering and amplification to every electrode site (pixel). The pixels are 50 μm × 50 μm and enable recording of all 384 channels at 30 kHz with a gain of 22.3 dB, noise of 9.57 μV rms, bandwidth of 0.1 Hz - 10 kHz, while only consuming 0.63 μW/channel. This work can be applied broadly across neural interfaces to create high channel-count arrays and ultimately improve BCIs.

摘要

脑机接口(BCIs)具有临床益处,包括部分恢复丧失的运动控制、视觉、言语和听力。现有脑机接口的一个基本限制是它们无法以精细(<100μm)分辨率覆盖大脑皮层的多个区域(>厘米)。扩展神经接口的一个挑战是输出布线和连接器尺寸,因为每个通道都必须独立引出大脑。时分复用(TDM)通过使多个通道共享同一输出线来克服这一问题,但代价是增加了噪声。这项工作利用130纳米互补金属氧化物半导体(CMOS)工艺和转移印刷技术来设计和模拟一个384通道的有源复用阵列,该阵列通过在每个电极位点(像素)添加前端滤波和放大来最小化噪声。像素尺寸为50μm×50μm,能够以30千赫兹的频率记录所有384个通道,增益为22.3分贝,均方根噪声为9.57微伏,带宽为0.1赫兹至10千赫兹,而每个通道仅消耗0.63微瓦。这项工作可广泛应用于神经接口,以创建高通道数阵列,并最终改善脑机接口。

相似文献

1
Design and Simulation of a Low Power 384-channel Actively Multiplexed Neural Interface.
IEEE Biomed Circuits Syst Conf. 2022 Oct;2022:477-481. doi: 10.1109/biocas54905.2022.9948553. Epub 2022 Nov 16.
2
A 1024-Channel 268 nW/pixel 36×36 m/channel Data-Compressive Neural Recording IC for High-Bandwidth Brain-Computer Interfaces.
IEEE J Solid-State Circuits. 2024 Apr;59(4):1123-1136. doi: 10.1109/jssc.2023.3344798. Epub 2023 Dec 29.
3
SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
Biosens Bioelectron. 2019 Feb 1;126:355-364. doi: 10.1016/j.bios.2018.10.032. Epub 2018 Oct 19.
4
A CMOS Microelectrode Array System With Reconfigurable Sub-Array Multiplexing Architecture Integrating 24,320 Electrodes and 380 Readout Channels.
IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1044-1056. doi: 10.1109/TBCAS.2022.3211275. Epub 2023 Feb 14.
5
A dual slope charge sampling analog front-end for a wireless neural recording system.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3134-7. doi: 10.1109/EMBC.2014.6944287.
6
Micropower CMOS Integrated Low-Noise Amplification, Filtering, and Digitization of Multimodal Neuropotentials.
IEEE Trans Biomed Circuits Syst. 2009 Feb;3(1):1-10. doi: 10.1109/TBCAS.2008.2005297. Epub 2009 Jan 6.
7
Noise Power Minimization in CMOS Brain-Chip Interfaces.
Bioengineering (Basel). 2022 Jan 18;9(2):42. doi: 10.3390/bioengineering9020042.
8
Recording Strategies for High Channel Count, Densely Spaced Microelectrode Arrays.
Front Neurosci. 2021 Jul 13;15:681085. doi: 10.3389/fnins.2021.681085. eCollection 2021.
9
A PVT-Robust AFE-Embedded Error-Feedback Noise-Shaping SAR ADC With Chopper-Based Passive High-Pass IIR Filtering for Direct Neural Recording.
IEEE Trans Biomed Circuits Syst. 2022 Aug;16(4):679-691. doi: 10.1109/TBCAS.2022.3193944. Epub 2022 Oct 12.
10
A low-noise demultiplexing system for active multichannel microelectrode arrays.
IEEE Trans Biomed Eng. 1991 Jan;38(1):75-81. doi: 10.1109/10.68212.

本文引用的文献

1
Neuropixels 2.0: A miniaturized high-density probe for stable, long-term brain recordings.
Science. 2021 Apr 16;372(6539). doi: 10.1126/science.abf4588.
3
Speech synthesis from neural decoding of spoken sentences.
Nature. 2019 Apr;568(7753):493-498. doi: 10.1038/s41586-019-1119-1. Epub 2019 Apr 24.
4
The Potential for a Speech Brain-Computer Interface Using Chronic Electrocorticography.
Neurotherapeutics. 2019 Jan;16(1):144-165. doi: 10.1007/s13311-018-00692-2.
5
SiNAPS: An implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings.
Biosens Bioelectron. 2019 Feb 1;126:355-364. doi: 10.1016/j.bios.2018.10.032. Epub 2018 Oct 19.
6
Electrical stimulation of the midbrain excites the auditory cortex asymmetrically.
Brain Stimul. 2018 Sep-Oct;11(5):1161-1174. doi: 10.1016/j.brs.2018.05.009. Epub 2018 May 17.
7
Time Multiplexed Active Neural Probe with 1356 Parallel Recording Sites.
Sensors (Basel). 2017 Oct 19;17(10):2388. doi: 10.3390/s17102388.
9
Materials and processing approaches for foundry-compatible transient electronics.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):E5522-E5529. doi: 10.1073/pnas.1707849114. Epub 2017 Jun 26.
10
Review: Human Intracortical Recording and Neural Decoding for Brain-Computer Interfaces.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1687-1696. doi: 10.1109/TNSRE.2017.2677443. Epub 2017 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验