Guduff Ludmilla, Allami Ahmed J, van Heijenoort Carine, Dumez Jean-Nicolas, Kuprov Ilya
Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
School of Chemistry, University of Southampton, University Road, Southampton, SO17 1BJ, UK.
Phys Chem Chem Phys. 2017 Jul 21;19(27):17577-17586. doi: 10.1039/c7cp03074f. Epub 2017 Jun 27.
Magnetic resonance spectroscopy and imaging experiments in which spatial dynamics (diffusion and flow) closely coexists with chemical and quantum dynamics (spin-spin couplings, exchange, cross-relaxation, etc.) have historically been very hard to simulate - Bloch-Torrey equations do not support complicated spin Hamiltonians, and the Liouville-von Neumann formalism does not support explicit spatial dynamics. In this paper, we formulate and implement a more advanced simulation framework based on the Fokker-Planck equation. The proposed methods can simulate, without significant approximations, any spatio-temporal magnetic resonance experiment, even in situations when spatial motion co-exists intimately with quantum spin dynamics, relaxation and chemical kinetics.
在空间动力学(扩散和流动)与化学和量子动力学(自旋 - 自旋耦合、交换、交叉弛豫等)紧密共存的磁共振波谱和成像实验中,从历史上看一直很难进行模拟——布洛赫 - 托里方程不支持复杂的自旋哈密顿量,而刘维尔 - 冯·诺依曼形式体系不支持显式的空间动力学。在本文中,我们基于福克 - 普朗克方程制定并实现了一个更先进的模拟框架。所提出的方法可以在没有显著近似的情况下模拟任何时空磁共振实验,即使在空间运动与量子自旋动力学、弛豫和化学动力学紧密共存的情况下也是如此。